
1

Using Function Procedure Arguments

Keep in mind the following about function procedure arguments:

▪ Arguments can be variables (including arrays), constants, literals, or expressions.

▪ Some functions do not have arguments.

▪ Some functions have a fixed number of required arguments (from 1 to 60).

▪ Some functions have a combination of required and optional arguments.

Creating a function with no arguments

Most functions use arguments, but that’s not a requirement. Excel, for example, has a few

built-in worksheet functions that don’t use arguments, such as RAND, TODAY, and NOW.

The following is a simple example of a function that has no arguments. This function returns

the UserName property of the Application object, which is the name that appears in the

Personalize section of the Excel Options dialog box. This function is simple, but it can be useful

because there’s no built-in function that returns the user’s name:

Function User()

' Returns the name of the current user

User = Application.UserName

End Function

When you enter the following formula into a worksheet cell, the cell displays the name of the

current user:

=User()

As with Excel’s built-in functions, when you use a function with no arguments, you must

include a set of empty parentheses.

Creating a function with one argument

The function that follows takes a single argument and uses the Excel text-to-speech generator

to “speak” the argument:
Function SayIt(txt)

Application.Speech.Speak (txt)

End Function

For example, if you enter this formula, Excel will “speak” the contents of cell A1 whenever the
worksheet is recalculated:

=SayIt(A1)

You can use this function in a slightly more complex formula, as shown here. In this example,
the argument is a text string rather than a cell reference:

=IF(SUM(A:A)>1000,SayIt("Goal reached"),)

2

This formula calculates the sum of the values in Column A. If that sum exceeds 1,000, you will
hear “Goal reached.” When you use the SayIt function in a worksheet formula, the function
always returns 0 because a value is not assigned to the function’s name.

Creating another function with one argument
This section contains a more complex function that is designed for a sales manager who needs
to calculate the commissions earned by the sales force. The commission rate is based on the
amount sold—those who sell more earn a higher commission rate. The function returns the
commission amount, based on the sales made (which is the function’s only argument—a
required argument). The calculations in this example are based on the following table:

You can use any of several different methods to calculate commissions for various sales
amounts that are entered into a worksheet. You could write a formula such as the following:

=IF(AND(A1>=0,A1<=9999.99),A1*0.08,IF(AND(A1>=10000,

A1<=19999.99), A1*0.105,IF(AND(A1>=20000,

A1<=39999.99),A1*0.12,IF(A1>=40000,A1*0.14,0))))

This approach isn’t the best for a couple of reasons. First, the formula is overly complex and
difficult to understand. Second, the values are hard-coded into the formula, making the
formula difficult to modify if the commission structure changes. A better solution is to use a
lookup table function to compute the commissions; here’s an example:

=VLOOKUP(A1,Table,2)*A1

Using the VLOOKUP function requires that you have a table of commission rates set up in your
worksheet. Another option is to create a custom function, such as the following:

Function Commission(Sales)

' Calculates sales commissions

Tier1 = 0.08

Tier2 = 0.105

Tier3 = 0.12

Tier4 = 0.14

Select Case Sales

Case 0 To 9999.99

Commission = Sales * Tier1

Case 10000 To 19999.99

Commission = Sales * Tier2

Case 20000 To 39999.99

Commission = Sales * Tier3

Case Is >= 40000

Commission = Sales * Tier4

End Select

End Function

3

After you define the Commission function in a VBA module, you can use it in a worksheet
formula. Entering the following formula into a cell produces a result of 3,000. (The amount,
25,000, qualifies for a commission rate of 12%.)

=Commission(25000)

If the sales amount is in cell D23, the function’s argument would be a cell reference, like this:
=Commission(D23)

Creating a function with two arguments
This example builds on the previous one. Imagine that the sales manager implements a new
policy: the total commission paid is increased by 1 percent for every year that the salesperson
has been with the company. For this example, the custom Commission function (defined in
the preceding section) has been modified so that it takes two arguments, both of which are
required arguments. Call this new function Commission2:

Function Commission2(Sales, Years)

' Calculates sales commissions based on years in

service

Tier1 = 0.08

Tier2 = 0.105

Tier3 = 0.12

Tier4 = 0.14

Select Case Sales

Case 0 To 9999.99

Commission2 = Sales * Tier1

Case 10000 To 19999.99

Commission2 = Sales * Tier2

Case 20000 To 39999.99

Commission2 = Sales * Tier3

Case Is >= 40000

Commission2 = Sales * Tier4

End Select

Commission2 = Commission2 + (Commission2 * Years /

100)

End Function

The modification was quite simple. The second argument (Years) was added to the Function
statement, and an additional computation was included that adjusts the commission before
exiting the function. The following is an example of how you write a formula using this
function. It assumes that the sales amount is in cell A1 and that the number of years that the
salesperson has worked is in cell B1:

=Commission2(A1,B1)

Creating a function with a range argument
The example in this section demonstrates how to use a worksheet range as an argument.
Actually, it’s not at all tricky; Excel takes care of the details behind the scenes. Assume that
you want to calculate the average of the five largest values in a range named Data. Excel
doesn’t have a function that can do this calculation, so you can write the following formula:

=(LARGE(Data,1)+LARGE(Data,2)+LARGE(Data,3)+

4

LARGE(Data,4)+LARGE(Data,5))/5

This formula uses Excel’s LARGE function, which returns the nth largest value in a range. The
preceding formula adds the five largest values in the range named Data and then divides the
result by 5. The formula works fine, but it’s rather unwieldy. Plus, what if you need to compute
the average of the top six values? You’d need to rewrite the formula and make sure that all
copies of the formula also get updated. Wouldn’t it be easier if Excel had a function named
TopAvg? For example, you could use the following (nonexistent) function to compute the
average:

=TopAvg (Data,5)

This situation is an example of when a custom function can make things much easier for you.
The following is a custom VBA function, named TopAvg, which returns the average of the top
n values in a range:

Function TopAvg(Data, Num)

' Returns the average of the highest Num values in

Data

Sum = 0

For i = 1 To Num

Sum = Sum + WorksheetFunction.Large(Data, i)

Next i

TopAvg = Sum / Num

End Function

This function takes two arguments: Data (which represents a range in a worksheet) and Num
(the number of values to average). The code starts by initializing the Sum variable to 0. It then
uses a For-Next loop to calculate the sum of the nth largest values in the range. (Note that
Excel’s LARGE function is used within the loop.) You can use an Excel worksheet function in
VBA if you precede the function with WorksheetFunction and a period. Finally, TopAvg is
assigned the value of Sum divided by Num.
You can use all Excel worksheet functions in your VBA procedures except those that have
equivalents in VBA. For example, VBA has a Rnd function that returns a random number.
Therefore, you can’t use Excel’s RAND function in a VBA procedure.

Creating a simple but useful function
Useful functions don’t have to be complicated. The function in this section is essentially a
wrapper for a built-in VBA function called Split. The Split function makes it easy to extract an
element in a delimited string. The function is named ExtractElement:

Function ExtractElement(Txt, n, Separator)

' Returns the nth element of a text string, where the

' elements are separated by a specified separator

character

ExtractElement = Split(Application.Trim(Txt),

Separator)(n - 1)

End Function

The function takes three arguments:

Txt: A delimited text string, or a reference to a cell that contains a delimited text string
n: The element number within the string

5

Separator: A single character that represents the separator

Here’s a formula that uses the ExtractElement function:

=EXTRACTELEMENT("123-45-678",2,"-")

The formula returns 45, the second element in the string that’s delimited by hyphens. The
delimiter can also be a space character. Here’s a formula that extracts the first name from the
name in cell A1:

=EXTRACTELEMENT(A1,1," ")

Debugging Custom Functions
Debugging a function can be a bit more challenging than debugging a Sub procedure. If you
develop a function to use in worksheet formulas, an error in the function simply results in an
error display in the formula cell (usually #VALUE!). In other words, you don’t receive the
normal runtime error message that helps you locate the offending statement.
When you’re debugging a worksheet formula, using only one instance of the function in your
worksheet is the best technique. The following are three methods you may want to use in
your debugging:

▪ Place MsgBox functions at strategic locations to monitor the value of specific variables.
Fortunately, message boxes in function procedures pop up when the procedure is
executed. But make sure you have only one formula in the worksheet that uses your
function; otherwise, the message boxes appear for each formula that’s evaluated.

▪ Test the procedure by calling it from a Sub procedure. Runtime errors display normally,
and you can either fix the problem (if you know what it is) or jump right into the
debugger.

▪ Set a breakpoint in the function, and then use the Excel debugger to step through the
function. Press F9, and the statement at the cursor becomes a breakpoint. The code
will stop executing, and you can step through the code line by line (by pressing F8).
Consult the Help system for more information about using VBA debugging tools.

UserForm Example
The example in this section is an enhanced version of the ChangeCase procedure presented
at the beginning of the chapter. Recall that the original version of this macro changes the text
in the selected cells to uppercase characters. This modified version asks the user what type of
case change to make: uppercase, lowercase, or proper case (initial capitals).

Creating the UserForm
This UserForm needs one piece of information from the user: the type of change to make to
the text. Because only one option can be selected, OptionButton controls are appropriate.
Start with an empty workbook and follow these steps to create the UserForm:

1. Press Alt+F11 to activate the VBE.

2. In the VBE, choose Insert ➪ UserForm. The VB Editor adds an empty form named
UserForm1 and displays the Toolbox.

3. Press F4 to display the Properties window and then change the following properties of
the UserForm object:

6

4. Add a CommandButton object to the UserForm and then change the following

properties for the CommandButton:

5. Add another CommandButton object and then change the following properties:

6. Add an OptionButton control and then change the following properties. (This option is

the default, so its Value property should be set to True.)

7. Add a second OptionButton control and then change the following properties:

8. Add a third OptionButton control and then change the following properties:

9. Adjust the size and position of the controls and the form until your UserForm

resembles the one shown in Figure 44.10. Make sure that the controls do not overlap.

Creating event handler procedures
The next step is to create two event handler procedures: one to handle the Click event for the
CancelButton CommandButton and the other to handle the Click event for the OKButton
CommandButton. Event handlers for the OptionButton controls are not necessary. The VBA
code can determine which of the three OptionButton controls is selected, but it does not need
to react when the choice is changed—only when OK or Cancel is clicked.
Event handler procedures are stored in the UserForm code module. To create the procedure
to handle the Click event for the CancelButton, follow these steps:

1. Activate the UserForm1 form by double-clicking its name in the Project window.
2. Double-click the CancelButton control. The VBE activates the code module for the

UserForm and inserts an empty procedure.
3. Insert the following statement before the End Sub statement: Unload Me

7

That’s all there is to it. The following is a listing of the entire procedure that’s attached to the
Click event for the CancelButton:

Private Sub CancelButton_Click()

Unload Me

End Sub

This procedure is executed when the CancelButton is clicked. It consists of a single statement
that unloads the form. Next, add the code to handle the Click event for the OKButton control.
Follow these steps:

1. Select OKButton from the drop-down list at the top of the module or reactivate the
UserForm and double-click the OKButton control. The VBE creates a new procedure
called OKButton_Click.

2. Enter the following code. The VBE has already entered the first and last statements for
you:

Private Sub OKButton_Click()

' Exit if a range is not selected

If TypeName(Selection) <> "Range" Then Exit Sub

' Upper case

If Me.OptionUpper.Value Then

For Each cell In Selection

If Not cell.HasFormula Then

cell.Value = StrConv(cell.Value, vbUpperCase)

End If

Next cell

End If

' Lower case

If Me.OptionLower.Value Then

For Each cell In Selection

If Not cell.HasFormula Then

cell.Value = StrConv(cell.Value, vbLowerCase)

End If

Next cell

End If

' Proper case

If Me.OptionProper.Value Then

For Each cell In Selection

If Not cell.HasFormula Then

cell.Value = StrConv(cell.Value, vbProperCase)

End If

Next cell

End If

Unload Me

End Sub

The macro starts by checking the type of selection. If a range is not selected, the procedure
ends. The remainder of the procedure consists of three separate blocks. Only one block is
executed, determined by which OptionButton is selected. The selected OptionButton has a
Value of True. Finally, the UserForm is unloaded (dismissed).

8

Showing the UserForm
At this point, the UserForm has all of the necessary controls and event procedures. All that’s
left is a way to display the form. This section explains how to write a VBA procedure to display
the UserForm:

1. Make sure the VBE window is activated.

2. Insert a module by choosing Insert ➪ Module.
3. In the empty module, enter the following code:

Sub ShowUserForm()

UChangeCase.Show

End Sub

4. Choose Run ➪ Run Sub/UserForm (or press F5). The Excel window is activated, and
the new UserForm is displayed.

Testing the UserForm
To try the UserForm from Excel, follow these steps:

1. Activate Excel.
2. Enter some text into a range of cells.
3. Select the range with the text.

4. Choose Developer ➪ Code ➪ Macros (or press Alt+F8). The Macro dialog box appears.
5. Select ShowUserForm from the list of macros and then click Run. The UserForm

appears.
6. Make your choice, and click OK.

Try it with a few more selections, including noncontiguous cells. Notice that if you click Cancel,
the UserForm is dismissed, and no changes are made. The code does have a problem, though:
if you select one or more entire columns, the procedure processes every cell, which can take
a long time. The version of the workbook on the website corrects this problem by working
with a subset of the selection that intersects with the workbook’s used range.

Enhancing UserForms
Creating UserForms can make your macros much more versatile. You can create custom
commands that display dialog boxes that look exactly like those that Excel uses. This section
contains some additional information to help you develop custom dialog boxes that work like
those that are built in to Excel.

Adding accelerator keys
All Excel dialog boxes work well with a mouse and a keyboard because each control has an
associated accelerator key. The user can press Alt plus the accelerator key to work with a
specific dialog box control.
Your custom dialog boxes should also have accelerator keys for all controls. You add
accelerator keys in the Properties window by entering a character for the Accelerator
property.
Your accelerator key can be any letter, number, or punctuation, regardless of whether that
character appears in the control’s caption. It’s a good practice to use a letter that is in the
control’s caption, though, because that letter will be underlined—a visual cue for the user.
Another common convention is to use the first letter of the control’s caption. But don’t
duplicate accelerator keys. If the first letter is already taken, use a different letter, preferably

9

one that is easy to associate with the word (like a hard consonant). If you have duplicate
accelerator keys, the accelerator key acts on the next control in the tab order of the UserForm.
Then, pressing the accelerator key again takes you to the second control with that accelerator.
Some controls (such as textboxes) don’t have a Caption property and other controls (such as
labels) can’t have the focus. You can assign an accelerator key to a label that describes the
control and put that label right before your target control in the tab order. Pressing the
accelerator key for a control that can’t take the focus activates the next control in the tab
order.

Controlling tab order
The previous section refers to a UserForm’s tab order. When you’re working with a UserForm,
pressing Tab and Shift+Tab cycles through the dialog box’s controls. When you create a
UserForm, you should make sure that the tab order is correct. Usually, it means that tabbing
should move through the controls in a logical sequence.

To view or change the tab order in a UserForm, choose View ➪ Tab Order to display the Tab
Order dialog box. You can then select a control from the list; use the Move Up and Move Down
buttons to change the tab order for the selected control.

