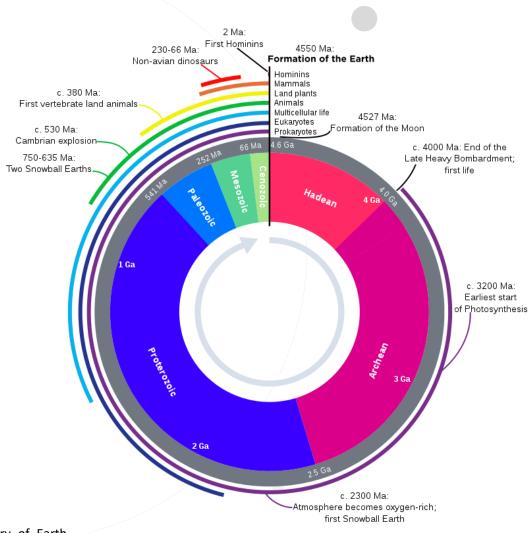
Evolution of important livestock species

Modul no. 2: Conservation and Sustainable Use of Animal Genetic Resources Tomáš Urban Mendel University in Brno, Faculty of AgriSciences

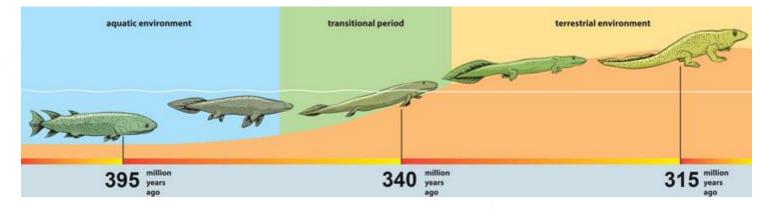
R

U


4

Co-funded by he European Union

History of Earth and life



Co-funded by

https://en.wikipedia.org/wiki/History_of_Earth

Evolution of animals

The ribbed medusa-like animal (*Dickinsonia*) is one of the oldest known animals living on Earth (about 558 million years old) https://www.science.org/content/article/fossil-oneworld-s-earliest-animals-according-fat-moleculespreserved-half-billion

https://theconversation.com/the-oldest-fish-in-the-world-lived-500-million-years-ago-27710

The oldest fish, the 518-

Metaspriggina walcotti, was

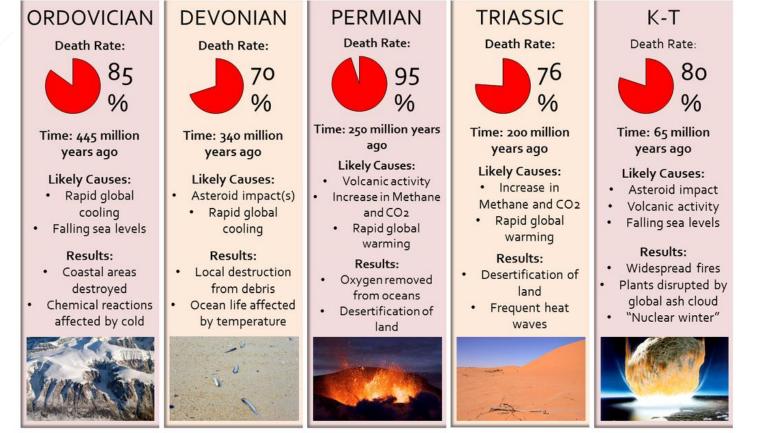
about 6 cm long, had a pair

of large protruding eyes and

million-year-old

a small pair of nasal

capsules.

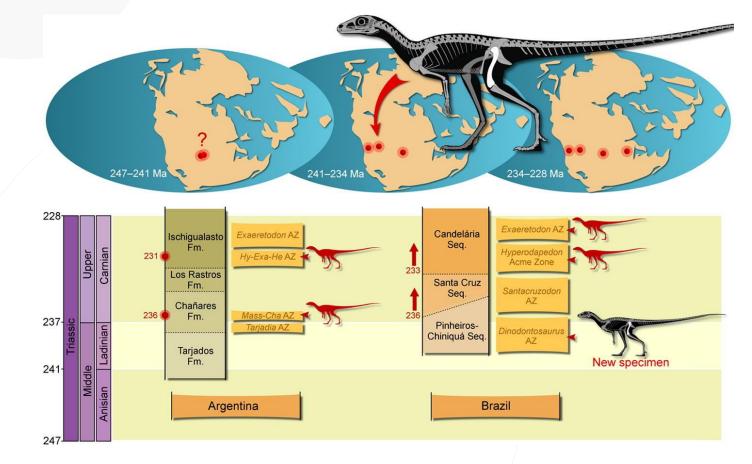

Co-funded by the European Union

Erasmus+ project 2021-1-SK01-KA220-HED-000032068

I S A G R E E D

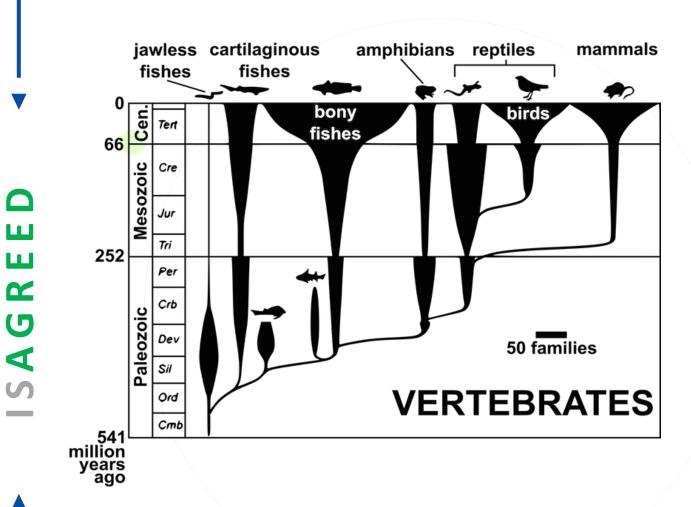
MASS EXTINCTIONS:

The biggest disasters in history

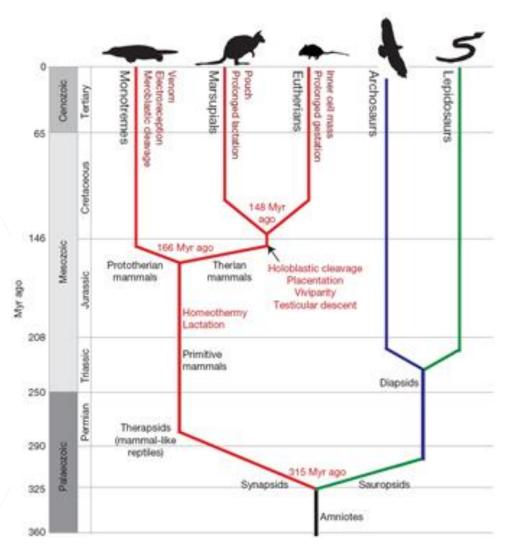

Poster by Budjarn Lambeth, Information from brittanica.com and bbc.co.uk, Images from Wikimedia Commons - Feel free to redistribute

Co-funded by

Erasmus+ project 2021-1-SK01-KA220-HED-000032068



The first dinosauromorph from Middle Triassic sediments (240-230 million years ago) in Brazil.

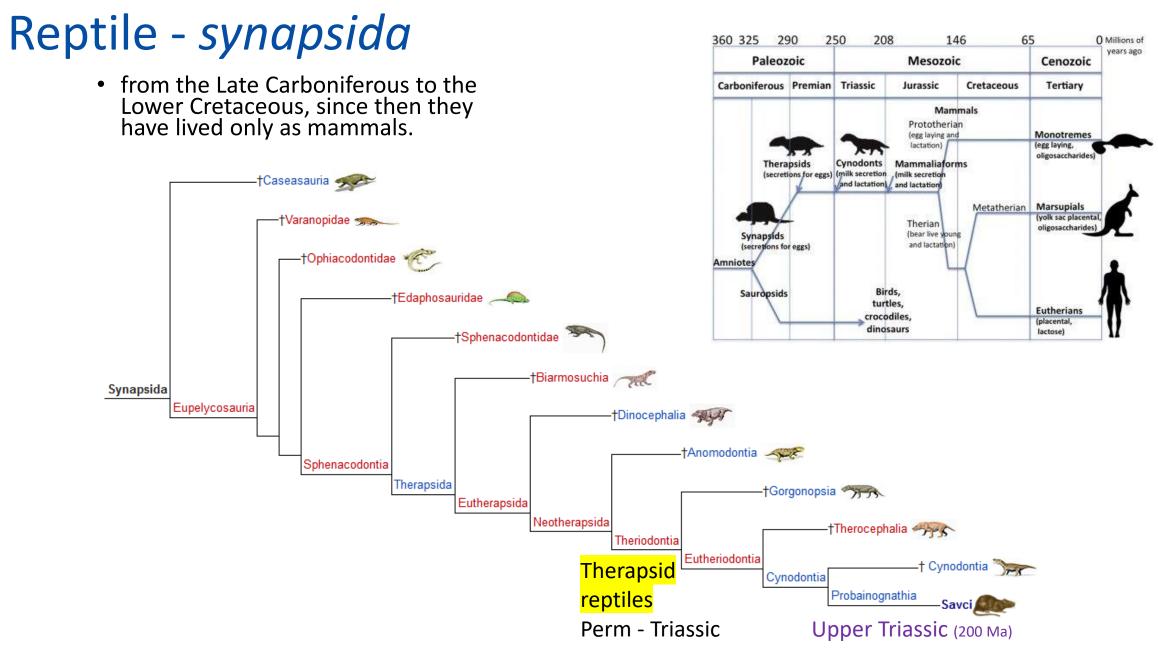

The new sample is therefore potentially the oldest dinosaur from South America, thus narrowing the biogeographic gap between Africa and Argentina during the early dinosaur radiation. In addition, the new specimen provides evidence that dinosaurids lived in South America earlier than previously thought (Ladinian-Middle Triassic).

Co-funded by the European Union

S

Co-funded by the European Union

E D •	Early reptiles	Dinosaurs Pterosaurs	Birds Extinction Extinction Extinction Reptiles	
RE	Mammal–like reptiles	Early mammals	Mammals	
SAG			5 million now	
IS	Permian Palaeozoic time of ancient life	Triassic Jurassic Cretaceous Mesozoic _{dinosaur} time	Pleistocene Cenozoic most recent time	


https://museumsvictoria.com.au/melbournemuseum/resources/dinosaur-walk/

• The ancestors of mammals are the **cynodont therapsids** (Cynodontia, Therapsida, Synapsida), reptiles that were one of the dominant groups of terrestrial vertebrates in the Triassic.

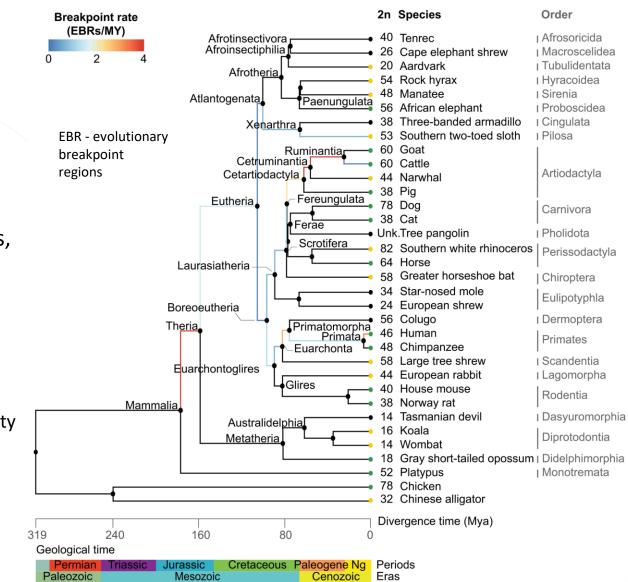
- Cynodonts produced a variety of forms during the Triassic that exhibit a mosaic of "old reptilian" and "new mammalian" characters to varying degrees.
 - It is important to note, however, that the emergence of these characters was gradual. Determining the reptile/mammal boundary is essentially artificial and its exact location is very difficult and subjective. In other words, **mammals** are advanced cynodonts.

Co-funded by he European Union

Sister Branch - *Sauropsida* -> reptiles and birds today

Reconstructing the genome of the common ancestor of all mammals

- Every modern mammal, from the platypus to the blue whale, descends from a common ancestor that lived about
 180 million years ago.
- The scientists drew on high-quality genome sequences from 32 living species representing 23 of the 26 known mammalian orders. These included humans and chimpanzees, wombats and rabbits, manatees, domestic cattle, rhinoceroses, bats and marsupials. The genomes of chickens and Chinese alligators were also included in the analysis as comparison groups.
 - The mammalian ancestor had 19 autosomal chromosomes (2n = 38) + 2 sex chromosomes.
 - Scientists found nine whole chromosomes or fragments of chromosomes in the mammalian ancestor, whose gene order is the same as that of modern bird chromosomes (320 million years conservation synteny).
 - Damas J. et al., Evolution of the ancestral mammalian karyotype and syntenic regions, Proceedings of the National Academy of Sciences (2022). DOI: 10.1073/pnas.2209139119

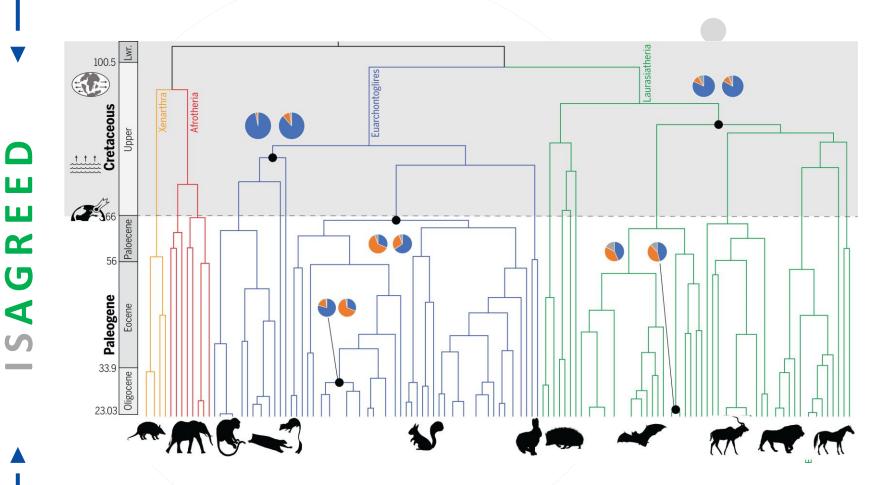


Mammalian radiation

- It is only in the Cenozoic (65 million years ago, the beginning of the Tertiary) that mammalian differentiation grows, increasing in size, flying mammals, marine mammals...
 - Archaic primates, proto-predators, anthropoids
- Extinct 37-22.5 million years ago and replaced by apes, artiodactyls, elephants, carnivores, rodents, bats, primates
- Late Tertiary the modernisation of mammals (until today) R
 - Specialised mammals

(5

- Horses with 3 fingers -> with 1 finger; Primitive dogs -> modern wolves and foxes
- High diversity a small remnant of mammal species diversity has survived to the present day
 - 2000 known families died out, today only 1000 families ٠

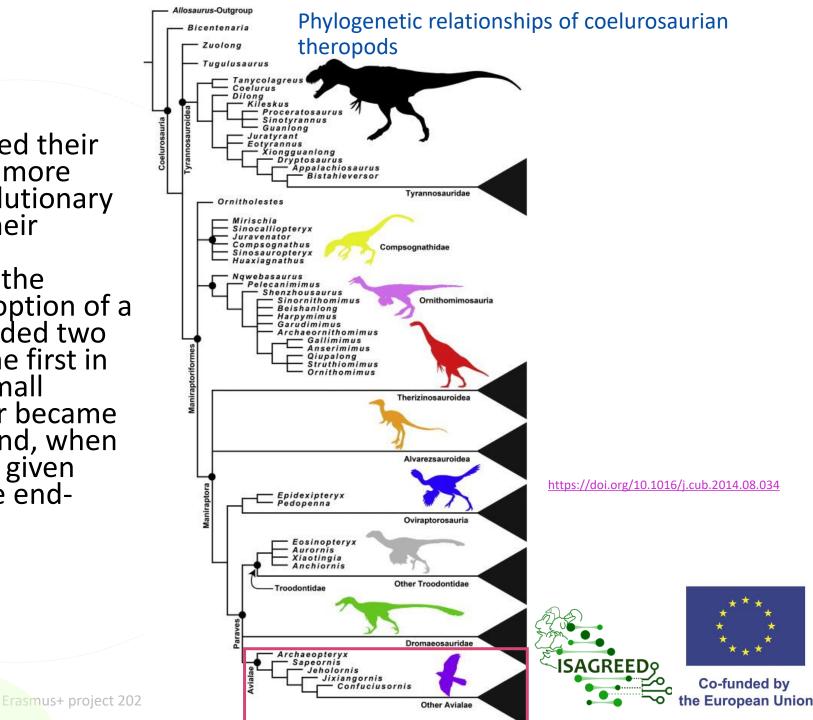

Phylogenetic tree of descendants and reconstructed ancestors. The colour of the branches represents the rate of breakpoints in the RACF (breakpoints per million years). Black branches represent undetermined breakpoint rates. The colors of the spikes represent the assembly sequence: black, scaffold-level genome assembly; green, chromosome-level genome assembly; yellow, chromosome-scale scaffold-level genome assembly. The numbers next to the species names indicate the diploid chromosome number (if known).

Co-funded by he European Union

The timing of placental mammal evolution

The combination of Cretaceous continental fragmentation and lineage isolation, followed by the direct and indirect effects of the K-Pg extinction during rapid land emergence, synergistically contributed to the accelerated rate of placental mammal diversification during the early Cenozoic.

Genomic time trees reveal an accumulation of cladogenic events before and immediately after the Cretaceous-Paleogene (K-Pg) boundary, suggesting an important role for Cretaceous continental vicariance and K-Pg extinction in placental radiation.


* * * * * * *

https://www.science.org/doi/10.1126/science.abl8189

c Co-funded by the European Union

Bird radiation

Modern birds have achieved their enormous diversity over a more than **150-million-year** evolutionary journey that began with their divergence from theropod dinosaurs, continued with the gradual and piecemeal adoption of a lethal body plan, and included two bursts of diversification: the first in the Mesozoic, when the small feathered winged dinosaur became fully formed, and the second, when the surviving species were given free rein to thrive after the end-Cretaceous extinction.

I S A G R E E D

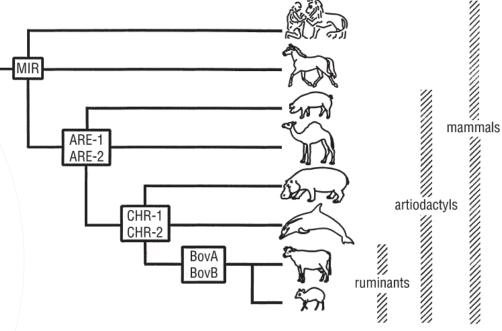
"Ungulates"

- Evolutionarily very different groups of herbivorous mammals
- Cretaceous (141-65 million years ago) no ungulates
 - Proto-ungulates small body, primitive teeth, claws (close to carnivorans).

• True ungulates

- They appear at the beginning of the Paleocene (65 million years) and diversify rapidly, in the Eocene their extinction, only some survived to the Oligocene (37-22.5 million years)
- Families: Hyopsodontidae, Phenacodontidae

Artiodactyls


 Reduction of fingers to 2; reduction of teeth (upper incisors, canines), digestive system - rumination (in suborders of camelids and ruminants) - in the Upper Eocene (40 million years)

Cetartiodactyla - artiodactyls

- about 220 species representatives live all over the world outside Australia and _ Antarctica
- Herbivores, occasionally omnivores
- They separated from other placental mammals 87.2 million years ago.
- Subordinate taxa:
 - suborder *Suiformes* Jaeckel, 1911 pigs, peccaries
 - suborder Tylopoda Illiger, 1811 camels, Ilamas
 - suborder *Ruminantia* Scopoli, 1777 -Ruminants
 - suborder Cetancodonta Arnason, Gullberg, Gretasdottir, Ursing & Janke, 2000 (cetaceans, hippos)

- Short interspersed repepeated elements (SINE)
- Mammalian-wide interspersed repeats
 - Artiodactyl repeats (ARE)
 - Cetacean-hippopotamus-ruminant repeats CHR)
 - Ruminant repeats (Bov)

European Union

Erasmus+ project 2021-1-SK01-KA220-HED-000032068

I S A G R E E D

- Superfamily Bovoidea ox (cattle), buffalo, antelope, chamois, musk ox, goats and sheep
 - 187 fossil species known
 - Main distribution in the Pliocene (2 million years)
 - Northern Europe and Asia, from the end of the Pliocene southward and into Africa; migration also into North America
- Family *Bovidae*
 - Development began in the Middle Oligocene (25 million years ago); Centre of origin - tropics and subtropics of Central Asia
 - Direct ancestors oldest genus Parabos (old Pliocene, 5-2 mya) in Eurasia, only in Pleistocene (Quaternary) -> North America (to South America by humans)
 - Finds of bison, ox and buffalo only in the Pleistocene (in sediments of older interglacial periods, suitable climate)

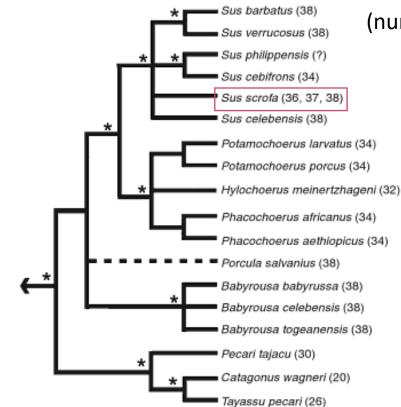
- Genus: *Bos*
- Species: + auroch (Bos primigenius)
 - Domesticated form: cattle (Bos primigenius taurus) and zebu (Bos primigenius indicus)
- Species: gaur (Bos gaurus) Subspecies: Indian gaur (Bos g. gaurus) Subspecies: Siamese gaur (Bos g. readei) Subspecies: Malayan gaur (Bos g. hubbbacki) Domesticated form: gayal (Bos gaurus f. frontalis)
- Species: banteng (Bos javanicus) Subspecies: Javan banteng (Bos j. javanicus) Subspecies: Bornean banteng (Bos j. lowi) Subspecies: Burma banteng (Bos j. birmanicus) Domesticated form: Bali cattle (Bos banteng)
- Species: kouprey (Bos sauveli) mainly Cambodia
- Species: wild yak (Bos mutus) Domesticated form: domestic yak (Bos mutus f. grunniensis)

Co-funded by the European Union

ISAGREE

- Suborder: Suina
- Genera: Suoidea
 - Family: Tayassuidae
 - Genus: Catagonus , Pecar, Tayassu (all labeled as pekari)
 - Separated from pigs in SE Asia in the late Eocene, migrated to Eurasia, Africa and North America -> South America only modern forms of peccaries live here
 - Family: *Suidae*
 - Upper Eocene (Thailand, 35-40 million years ago)
 - Subfamily: Suinae
 - Tribus:
 - Suini
 - Genus: Sus
 - Babyrousini
 - Phacochoerini
 - Potamochoerini

R


U

1

Co-funded by the European Union

Cladogram by mtDNA and nuclear DNA sequences

(number of chromosomes)

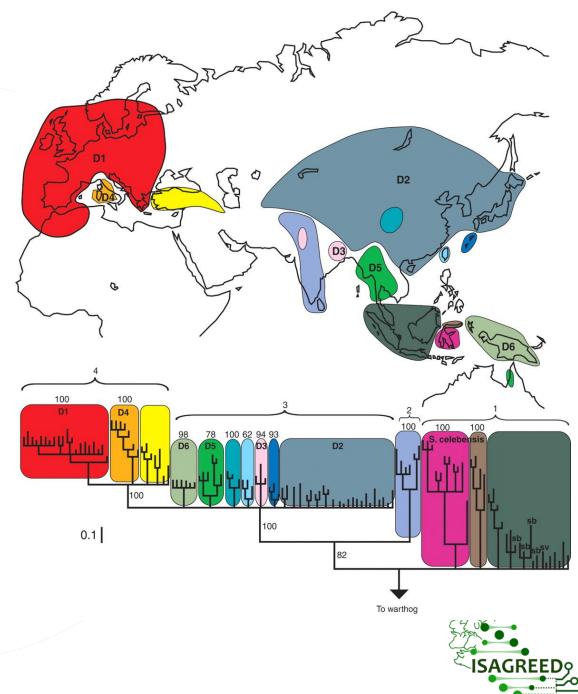
The areas of these subspecies are close and the level of discriminating differences may be quite small, involving size, colour, proportions, skull characters and, in several cases, chromosome numbers. The variation in chromosome number is a result of two distinct Robertsonian translocations, which were found in the different geographical areas of the species (Tikhonov and Troshina, 1974; Bosma, 1976). The usual number of chromosomes in S. scrofa is 38 (Bosma et al., 1995). However, translocation I involving chromosomes 16 and 17 and translocation II involving chromosomes 15 and 17 were found in Kyrgyzstani and European boars (Tikhonov and Troshina, 1978), and reduce the number of chromosomes to 37 in crosses (heterozygotes) and to 36 in homozygotes.

Fig. 1.1. A cladogram depicting the relationships in the suborder Suiformes. This tree amalgamates information from several recent publications that have generated mitochondrial and nuclear DNA sequences. Polytomies indicate a lack of resolution with respect to branching order, and the dashed line leading to the pygmy hog represents the current uncertainty with regard to its position within the tree. Well-supported nodes are marked by asterisks, and diploid chromosome numbers are placed within parentheses following the species name. This tree will be revised as newly elevated species are included and new genetic and morphological data resolve the branching order.

Erasmus+ project 2021-1-SK01-KA220-HED-000032068

Co-funded by the European Union

- Origin : islands of SE Asia -> SE Asia - -> Middle East, North Africa, Europe
- 6-5.3 million years.
- According to morphological and molecular genetic data -> 3 evolutionary groups (differentiated during the Pliocene):
 - S. cebifrons, S. celebensis,
 - S. barbatus
 - S. verrucosus, S. scrofa, S. ahoenobarbus



- Sus scrofa originated in SE Asia some 3-4 million years ago and spread to almost all of Eurasia within 1 million years.
- Wild boars were also found in the northern part of Sumatra, this population separated from the Eurasian pig about 1.5 2 million years ago.
- European and Asian wild boars diverged about 1 million years ago > very different low-frequency alleles at millions of loci in the genome and more than a million loci that are fixed for alternative alleles.

Independent pig domestication sites

Greger Larson, et al. 2005. Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication. Science 11 March 2005. Vol. 307. no. 5715, pp. 1618 -1621. DOI: 10.1126/science.1106927.

LU R U 4

Co-funded by the European Union

Common name	Scientific name	Approximate time frame for domestication (years before present)	Geographical location
Dog	Canis familiaris	15,000	Eurasia
Goat	Capra bircus	10,500	Southwest Asia
Sheep	Ovis aries	11,000	Southwest Asia
Humpless cattle (taurine)	Bos taurus	10,300	Southwest Asia
Pig	Sus scrofa	10,300	Southwest Asia
Cat	Felis catus	9,500	Southwest Asia
Humped cattle (zebu)	Bos indicus	8,000	South Asia
Water buffalo	Bubalus bubalis	4,500	South Asia
Pig	Sus scrofa	8,000	East/Southeast Asia
Chicken	Gallus gallus	4,000	East/Southeast Asia
Duck	Anas platyrhynchos	1,000	East/Southeast Asia
Horse	Equus caballus	5,500	Central Asia
Bactrian camel	Camelus bactrianus	4,500	Central Asia
Dromedary camel	Camelus dromedarius	3,000	Arabian Peninsula
Donkey	Equus asinus	5,500	North Africa
Llama	Lama glama	6,000	South America
Alpaca	Vicugna pacos	5,000	South America

Table 1The time frame and geography of domestication for key vertebrate domestic species (modified from 1, 160)

DOI: 10.1146/annurev-animal-022516-022747

Thank you for your attention!

This presentation has been supported by the Erasmus+ KA2 Cooperation Partnerships grant no. 2021-1-SK01-KA220-HED-000032068 "Innovation of the structure and content of study programs in the field of animal genetic and food resources management with the use of digitalisation - Inovácia obsahu a štruktúry študijných programov v oblasti manažmentu živočíšnych genetických a potravinových zdrojov s využitím digitalizácie". The European Commission support for the production of this presentation does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Tomáš Urban

urban@mendelu.cz

Co-funded by he European Union