
1

Excel Macros examples

Brief Look at Variables
You can think of variables as memory containers that you can use in your procedures. There
are different types of variables, each tasked with holding a specific type of data. Some of the
common types of variables:

✓ String: Holds textual data
✓ Integer: Holds numeric data ranging from –32,768 to 32,767
✓ Long: Holds numeric data ranging from –2,147,483,648 to 2,147,483,647
✓ Double: Holds floating point numeric data
✓ Variant: Holds any kind of data
✓ Boolean: Holds binary data that returns True or False
✓ Object: Holds an actual object from the Excel object mode

The term used for creating a variable in a macro is declaring a variable. You do so by entering
Dim (an abbreviation for dimension), the name of your variable, and then the type. For
instance:

▪ Dim MyText as String
▪ Dim MyNumber as Integer
▪ Dim MyWorksheet as Worksheet

Macro Examples

Macro 1: Creating a New Workbook
You may sometimes want or need to create a new workbook in an automated way. For
instance, you may need to copy data from a table and paste it into a newly created workbook.
The following macro copies a range of cells from the active sheet and pastes the data into a
new workbook.

Sub Macro1()

‘Step 1 Copy the data
 Sheets(“Example 1”).Range(“B4:C15”).Copy
‘Step 2 Create a new workbook
 Workbooks.Add
‘Step 3 Paste the data
 ActiveSheet.Paste Destination:=Range(“A1”)
‘Step 4 Turn off application alerts
Application.DisplayAlerts = False
‘Step 5 Save the newly created workbook

 ActiveWorkbook.SaveAs _
 Filename:=”C:\Temp\MyNewBook.xlsx”

‘Step 6 Turn application alerts back on
 Application.DisplayAlerts = True

End Sub

Komentár od [MH1]: Your own sheet name.

Komentár od [MH2]: Your own range.

2

Here’s how this macro works:
1. In Step 1, we simply copy the data that ranges from cells B4 to C15. The thing to note

here is that you are specifying both the sheet and the range by name. This is a best
practice when you are working with multiple workbooks open at one time.

2. We are using the Add method of the Workbook object to create a new workbook. This

is equivalent to manually clicking File➜New➜Blank Document in the Excel Ribbon.
3. In this step, you use the Paste method to send the data you copied to cell A1 of the

new workbook. Pay attention to the fact that the code refers to the ActiveSheet object.
When you add a workbook, the new workbook immediately gains focus, becoming the
active workbook. This is the same behavior you would see if you were to add a
workbook manually.

4. In Step 4 of the code, we set the DisplayAlerts method to False, effectively turning off
Excel’s warnings. We do this because in the next step of the code, we save the newly
created workbook. We may run this macro multiple times, in which case Excel attempts
to save the file multiple times. What happens when you try to save a workbook
multiple times? That’s right — Excel warns you that there is already a file out there
with that name and then asks if you want to overwrite the previously existing file.
Because your goal is to automate the creation of the new workbook, you want to
suppress that warning.

5. In Step 5, we save the file by using the SaveAs method. Note that we are entering the
full path of the save location, including the final filename.

6. Because we turned application alters off in Step 4, we need to turn them back on. If
we don’t, Excel continues to suppress all warnings for the life of the current session.

Macro 2: Protect a Worksheet on Workbook Close
Sometimes you need to send your workbook out into the world with specific worksheets
protected. If you find that you’re constantly protecting and unprotecting sheets before
distributing your workbooks, this macro can help you.
This code is triggered by the workbook’s BeforeClose event. When you try to close the
workbook, this event fires, running the code within. The macro automatically protects the
specified sheet with the given password, and then saves the workbook.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

‘Step 1: Protect the sheet with a password
 Sheets(“Sheet1”).Protect Password:=”RED”
‘Step 2: Save the workbook

 ActiveWorkbook.Save
End Sub

1. In Step 1, we are explicitly specifying which sheet we want to protect — Sheet1, in this
case. We are also providing the password argument, Password:=RED. This defines the
password needed to remove the protection. This password argument is completely
optional. If you omit this altogether, the sheet will still be protected, but you won’t
need a password to unprotect it. Also, be aware that Excel passwords are case-
sensitive, so you’ll want pay attention to the exact password and capitalization that
you are using.

3

2. Step 2 tells Excel to save the workbook. If we don’t save the workbook, the sheet
protection we just applied won’t be in effect the next time the workbook is opened.

Macro 3: Create a Backup of a Current Workbook with Today’s Date
You should know that making backups of your work is important. Now you can have a macro
do it for you. This simple macro saves your workbook to a new file with today’s date as part
of the name.
The trick to this macro is piecing together the new filename. The new filename has three
pieces: the path, today’s date, and the original filename.
The path is captured by using the Path property of the ThisWorkbook object. Today’s date is
grabbed with the Date function.
You’ll notice that we are formatting the date (Format(Date, “mm-dd-yy”)). This is because by
default, the Date function returns mm/dd/yyyy. We use hyphens instead of forward slashes
because the forward slashes would cause the file save to fail. (Windows does not allow
forward slashes in filenames.)
The last piece of the new filename is the original filename. We use the Name property of the
ThisWorkbook object to capture that:

Sub Macro3()

‘Step 1: Save workbook with new filename
 ThisWorkbook.SaveCopyAs _
 Filename:=ThisWorkbook.Path & “\” & _

 Format(Date, “mm-dd-yy”) & “ “ & _
 ThisWorkbook.Name
End Sub

In the one and only step, the macro builds a new filename and uses the SaveCopyAs method
to save the file.

Macro 24: Create a New Workbook for Each Worksheet
Many Excel analysts need to parse their workbooks into separate books per worksheet tab. In
other words, they need to create a new workbook for each of the worksheets in their existing
workbook. You can imagine what an ordeal this would be if you were to do it manually. The
following macro helps automate that task.
In this macro, you are looping the worksheets, copying each sheet, and then sending the copy
to a new workbook that is created on the fly. The thing to note here is that the newly created
workbooks are being saved in the same directory as your original workbook, with the same
filename as the copied sheet (wb.SaveAs ThisWorkbook.Path & “\” & ws.Name).

Sub Macro4()

‘Step 1: Declare all the variables.
 Dim ws As Worksheet
 Dim wb As Workbook

‘Step 2: Start the looping through sheets
 For Each ws In ThisWorkbook.Worksheets

‘Step 3: Create new workbook and save it.
 Set wb = Workbooks.Add

4

 wb.SaveAs ThisWorkbook.Path & “\” & ws.Name
‘Step 4: Copy the target sheet to the new workbook

 ws.Copy Before:=wb.Worksheets(1)
 wb.Close SaveChanges:=True

‘Step 5: Loop back around to the next worksheet
 Next ws

End Sub

Not all valid worksheet names translate to valid filenames. Windows has specific rules that
prevent you from naming files with certain characters. You cannot use these characters when
naming a file: backslash (\), forward slash (/), colon (:), asterisk (*), question mark (?), pipe (|),
double quote (“), greater than (>), and less than (<). The twist is that you can use a few of
these restricted characters in your sheet names; specifically, double quote, pipe (|), greater
than (>), and less than (<).
As you’re running this macro, naming the newly created files to match the sheet name may
cause an error. For instance, the macro throws an error when creating a new file from a sheet
called May| Revenue (because of the pipe character). To make a long story short, avoid
naming your worksheets with these restricted characters.

1. Step 1 declares two object variables. The ws variable creates a memory container for
each worksheet the macro loops through. The wb variable creates the container for
the new workbooks we create.

2. In Step 2, the macro starts looping through the sheets. The use of the ThisWorkbook
object ensures that the active sheet that is being copied is from the workbook the code
is in, not the new workbook that is created.

3. In Step 3, we create the new workbook and save it. We save this new book in the same
path as the original workbook (ThisWorkbook). The filename is set to be the same
name as the currently active sheet.

4. Step 4 copies the currently active sheet and uses the Before parameter to send it to
the new book as the first tab.

5. Step 5 loops back to get the next sheet. After all of the sheets are evaluated, the macro
ends.

Macro 5: Create a Table of Contents for Your Worksheets
Outside of sorting worksheets, creating a table of contents for the worksheets in a workbook
is the most commonly requested Excel macro. The reason is probably not lost on you. We
often have to work with files that have more worksheet tabs than can easily be seen or
navigated. A table of contents definitely helps. The following macro not only creates a list of
worksheet names in the workbook, but it also ads hyperlinks so that you can easily jump to a
sheet with a simple click.

Sub Macro5 ()

‘Step 1: Declare Variables
 Dim i As Long

‘Step 2: Delete Previous TOC if Exists
On Error Resume Next

 Application.DisplayAlerts = False
Sheets(“Table Of Contents”).Delete

5

 Application.DisplayAlerts = True
 On Error GoTo 0

‘Step 3: Add a new TOC sheet as the first sheet
 ThisWorkbook.Sheets.Add _
 Before:=ThisWorkbook.Worksheets(1)
 ActiveSheet.Name = “Table Of Contents”

‘Step 4: Start the i Counter
 For i = 1 To Sheets.Count

‘Step 5: Select Next available row
 ActiveSheet.Cells(i, 1).Select

‘Step 6: Add Sheet Name and Hyperlink
 ActiveSheet.Hyperlinks.Add _
 Anchor:=ActiveSheet.Cells(i, 1), _
 Address:=””, _

 SubAddress:=”’” & Sheets(i).Name & “’!A1”, _
 TextToDisplay:=Sheets(i).Name

‘Step 7: Loop back increment i
 Next i
End Sub

1. Step 1 declares an integer variable called i to serve as the counter as the macro iterates
through the sheets. Note that this macro is not looping through the sheets the way
previous macros in this Part did. In previous macros, we looped through the
worksheets collection and selected each worksheet there. In this procedure, we are
using a counter (our i variable). The main reason is because we not only have to keep
track of the sheets, but we also have to manage to enter each sheet name on a new
row into a table of contents. The idea is that as the counter progresses through the
sheets, it also serves to move the cursor down in the table of contents so each new
entry goes on a new row.

2. Step 2 essentially attempts to delete any previous sheet called Table of Contents.
Because there may not be any Table of Contents sheet to delete, we have to start Step
2 with the On Error Resume Next error handler. This tells Excel to continue the macro
if an error is encountered here. We then delete the Table of Contents sheet using the
DisplayAlerts method, which effectively turns off Excel’s warnings so we don’t have to
confirm the deletion. Finally, we reset the error handler to trap all errors again by
entering On Error GoTo 0.

3. In Step 3, we add a new sheet to the workbook using the Before argument to position
the new sheet as the first sheet. We then name the sheet Table of Contents. As we
mentioned previously in this Part, when you add a new worksheet, it automatically
becomes the active sheet. Because this new sheet has the focus throughout the
procedure, any references to ActiveSheet in this code refer to the Table of Contents
sheet.

4. Step 4 starts the i counter at 1 and ends it at the maximum count of all sheets in the
workbook. Again, instead of looping through the Worksheets collection like we’ve
done in previous macros, we are simply using the i counter as an index number that
we can pass to the Sheets object. When the maximum number is reached, the macro
ends.

6

5. Step 5 selects the corresponding row in the Table of Contents sheet. That is to say, if
the I counter is on 1, it selects the first row in the Table of Contents sheet. If the i
counter is at 2, it selects the second row, and so on. We are able to do this using the
Cells item. The Cells item provides an extremely handy way of selecting ranges through
code. It requires only relative row and column positions as parameters. So Cells(1,1)
translates to row 1, column 1 (or cell A1). Cells(5, 3) translates to row 5, column 3 (or
cell C5). The numeric parameters in the Cells item are particularly handy when you
want to loop through a series of rows or columns using an incrementing index number.

6. Step 6 uses the Hyperlinks.Add method to add the sheet name and hyperlinks to the
selected cell. This step feeds the Hyperlinks.Add method the parameters it needs to
build out the hyperlinks.

7. The last step in the macro loops back to increment the i counter to the next count.
When the i counter reaches a number that equals the count of worksheets in the
workbook, the macro ends.

Macro 6: Highlight the Active Row and Column
When looking at a table of numbers, it would be nice if Excel automatically highlighted the
row and column you’re on. This effect gives your eyes a lead line up and down the column as
well as left and right across the row. The following macro enables that effect with just a simple
double-click. When the macro is in place, Excel highlights the row and column for the cell that
is active, greatly improving your ability to view and edit a large grid.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)

‘Step 1: Declare Variables
 Dim strRange As String

‘Step2: Build the range string
 strRange = Target.Cells.Address & “,” & _
 Target.Cells.EntireColumn.Address & “,” & _
 Target.Cells.EntireRow.Address

‘Step 3: Pass the range string to a Range
 Range(strRange).Select

End Sub

1. We first declare an object called strRange. This creates a memory container we can
use to build a range string.

2. A range string is nothing more than the address for a range. “A1” is a range string that
points to cell A1. “A1:G5” is also a range string; this points to a range of cells
encompassing cells A1 to G5. In Step 2, we are building a range string that
encompasses the double-clicked cell (called Target in this macro), the entire active
row, and the entire active column. The Address properties for these three ranges are
captured and pieced together into the strange variable.

3. In Step 3, we feed the strRange variable as the address for a Range.Select statement.
This is the line of the code that finally highlights the double-clicked selection.

Macro 7: Deleting Blank Rows
Work with Excel long enough, and you’ll find out that blank rows can often cause havoc on
many levels. They can cause problems with formulas, introduce risk when copying and pasting,

7

and sometimes cause strange behaviors in PivotTables. If you find that you are manually
searching out and deleting blank rows in your data sets, this macro can help automate that
task.
In this macro, we are using the UsedRange property of the Activesheet object to define the
range we are working with. The UsedRange property gives us a range that encompasses the
cells that have been used to enter data. We then establish a counter that starts at the last row
of the used range to check if the entire row is empty. If the entire row is indeed empty, we
remove the row. We keep doing that same delete for every loop, each time incrementing the
counter to the previous row.

Sub Macro7()

‘Step1: Declare your variables.
 Dim MyRange As Range
 Dim iCounter As Long

‘Step 2: Define the target Range.
 Set MyRange = ActiveSheet.UsedRange
‘Step 3: Start reverse looping through the range.

 For iCounter = MyRange.Rows.Count To 1 Step -1
‘Step 4: If entire row is empty then delete it.

 If Application.CountA(Rows(iCounter).EntireRow) = 0 Then
 Rows(iCounter).Delete
 End If

‘Step 5: Increment the counter down
 Next iCounter
End Sub

1. The macro first declares two variables. The first variable is an Object variable called
MyRange. This is an object variable that defines our target range. The other variable is
a Long Integer variable called iCounter. This variable serves as an incremental counter.

2. In Step 2, the macro fills the MyRange variable with the UsedRange property of the
ActiveSheet object. The UsedRange property gives us a range that encompasses the
cells that have been used to enter data. Note that if we wanted to specify an actual
range or a named range, we could simply enter its name — Range(“MyNamedRange”).

3. In this step, the macro sets the parameters for the incremental counter to start at the
max count for the range (MyRange.Rows.Count) and end at 1 (the first row of the
chosen range). Note that we are using the Step-1 qualifier. Because we specify Step -
1, Excel knows we are going to increment the counter backwards, moving back one
increment on each iteration. In all, Step 3 tells Excel to start at the last row of the
chosen range, moving backward until it gets to the first row of the range.

4. When working with a range, you can explicitly call out a specific row in the range by
passing a row index number to the Rows collection of the range. For instance,
Range(“D6:D17”).Rows(5) points to the fifth row in the range D6:D17.

5. In Step 4, the macro uses the iCounter variable as an index number for the Rows
collection of MyRange. This helps pinpoint which exact row we are working with in the
current loop. The macro checks to see whether the cells in that row are empty. If they
are, the macro deletes the entire row.

6. In Step 5, the macro loops back to increment the counter down.

8

Macro 8: Deleting Blank Columns
Just as with blank rows, blank columns also have the potential of causing unforeseen errors.
If you find that you are manually searching out and deleting blank columns in your data sets,
this macro can automate that task.
In this macro, we are using the UsedRange property of the ActiveSheet object to define the
range we are working with. The UsedRange property gives us a range that encompasses the
cells that have been used to enter data. We then establish a counter that starts at the last
column of the used range, checking if the entire column is empty. If the entire column is indeed
empty, we remove the column. We keep doing that same delete for every loop, each time
incrementing the counter to the previous column.

Sub Macro8()

‘Step1: Declare your variables.
 Dim MyRange As Range
 Dim iCounter As Long

‘Step 2: Define the target Range.
 Set MyRange = ActiveSheet.UsedRange

‘Step 3: Start reverse looping through the range.
 For iCounter = MyRange.Columns.Count To 1 Step -1

‘Step 4: If entire column is empty then delete it.
 If Application.CountA(Columns(iCounter).EntireColumn) = 0 Then

 Columns(iCounter).Delete
 End If

‘Step 5: Increment the counter down
 Next iCounter
End Sub

1. Step 1 first declares two variables. The first variable is an object variable called
MyRange. This is an Object variable that defines the target range. The other variable is
a Long Integer variable called iCounter. This variable serves as an incremental counter.

2. Step 2 fills the MyRange variable with the UsedRange property of the ActiveSheet
object. The UsedRange property gives us a range that encompasses the cells that have
been used to enter data. Note that if we wanted to specify an actual range or a named
range, we could simply enter its name — Range(“MyNamedRange”).

3. In this step, the macro sets the parameters for our incremental counter to start at the
max count for the range (MyRange.Columns.Count) and end at 1 (the first row of the
chosen range). Note that we are using the Step-1 qualifier. Because we specify Step -
1, Excel knows we are going to increment the counter backwards; moving back one
increment on each iteration. In all, Step 3 tells Excel that we want to start at the last
column of the chosen range, moving backward until we get to the first column of the
range.

4. When working with a range, you can explicitly call out a specific column in the range
by passing a column index number to the Columns collection of the range. For instance,
Range(“A1:D17”).Columns(2) points to the second column in the range (column B). In
Step 4, the macro uses the iCounter variable as an index number for the Columns
collection of MyRange. This helps pinpoint exactly which column we are working with

9

in the current loop. The macro checks to see whether all the cells in that column are
empty. If they are, the macro deletes the entire column.

5. In Step 5, the macro loops back to increment the counter down.

Macro 9: Trim Spaces from All Cells in a Range
A frequent problem when you import dates from other sources is leading or trailing spaces.
That is, the values that are imported have spaces at the beginning or end of the cell. This
obviously makes it difficult to do things like VLOOKUP or sorting. Here is a macro that makes
it easy to search for and remove extra spaces in your cells. In this macro, we enumerate
through a target range, passing each cell in that range through the Trim function.

Sub Macro9()

‘Step 1:Declare your variables
Dim MyRange As Range

 Dim MyCell As Range
‘Step 2: Save the Workbook before changing cells?

 Select Case MsgBox(“Can’t Undo this action. “ & _
 “Save Workbook First?”, vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save
 Case Is = vbCancel
 Exit Sub
 End Select

‘Step 3: Define the target Range.
 Set MyRange = Selection

‘Step 4: Start looping through the range.
 For Each MyCell In MyRange

‘Step 5: Trim the Spaces.
 If Not IsEmpty(MyCell) Then
 MyCell = Trim(MyCell)
 End If

‘Step 6: Get the next cell in the range
 Next MyCell
End Sub

1. Step 1 declares two Range object variables, one called MyRange to hold the entire
target range, and the other called MyCell to hold each cell in the range as the macro
enumerates through them one by one.

2. When you run a macro, it destroys the undo stack. You can’t undo the changes a macro
makes. Because we are actually changing data, we need to give ourselves the option
of saving the workbook before running the macro. Step 2 does this. Here, we call up a
message box that asks if we want to save the workbook first. It then gives us three
choices: Yes, No, and Cancel. Clicking Yes saves the workbook and continues with the
macro. Clicking Cancel exits the procedure without running the macro. Clicking No runs
the macro without saving the workbook.

3. Step 3 fills the MyRange variable with the target range. In this example, we are using
the selected range — the range that was selected on the spreadsheet. You can easily

10

set the MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your
target range is a named range, you can simply enter its name —
Range(“MyNamedRange”).

4. Step 4 starts looping through each cell in the target range, activating each cell as we
go through.

5. After a cell is activated, the macro uses the IsEmpty function to make sure the cell is
not empty. We do this to save a little on performance by skipping the cell if there is
nothing in it. We then pass the value of that cell to the Trim function. The Trim function
is a native Excel function that removes leading and trailing spaces.

6. Step 6 loops back to get the next cell. After all cells in the target range are activated,
the macro ends.

Macro 10: Copy Filtered Rows to a New Workbook
Often, when you’re working with a set of data that is AutoFiltered, you want to extract the
filtered rows to a new workbook. Of course, you can manually copy the filtered rows, open a
new workbook, paste the rows, and then format the newly pasted data so that all the columns
fit. But if you are doing this frequently enough, you may want to have a macro to speed up
the process. This macro captures the AutoFilter range, opens a new workbook, then pastes
the data.

Sub Macro10 ()

‘Step 1: Check for AutoFilter - Exit if none exists
 If ActiveSheet.AutoFilterMode = False Then
 Exit Sub
 End If

‘Step 2: Copy the Autofiltered Range to new workbook
 ActiveSheet.AutoFilter.Range.Copy
 Workbooks.Add.Worksheets(1).Paste

‘Step 3: Size the columns to fit
 Cells.EntireColumn.AutoFit
End Sub

1. Step 1 uses the AutoFilterMode property to check whether the sheet even has
AutoFilters applied. If not, we exit the procedure.

2. Each AutoFilter object has a Range property. This Range property obligingly returns
the rows to which the AutoFilter applies, meaning it returns only the rows that are
shown in the filtered data set. In Step 2, we use the Copy method to capture those
rows, and then we paste the rows to a new workbook. Note that we use
Workbooks.Add.Worksheets(1). This tells Excel to paste the data into the first sheet of
the newly created workbook.

3. Step 3 simply tells Excel to size the column widths to autofit the data we just pasted.

Macro 11: Create a PivotTable Inventory Summary
When your workbook contains multiple PivotTables, it’s often helpful to have an inventory
summary that outlines basic details about the PivotTables. With this type of summary, you
can quickly see important information like the location of each PivotTable, the location of each
PivotTable’s source data, and the pivot cache index each PivotTable is using.

11

When you create a PivotTable object variable, you expose all of a PivotTable’s properties —
properties like its name, location, cache index, and so on. In this macro, we loop through each
PivotTable in the workbook and extract specific properties into a new worksheet. Because
each PivotTable object is a child of the worksheet it sits in, we have to first loop through the
worksheets in a workbook first, and then loop through the PivotTables in each worksheet.
Take a moment to walk through the steps of this macro in detail.

Sub Macro11()

‘Step 1: Declare your Variables
 Dim ws As Worksheet
 Dim pt As PivotTable
 Dim MyCell As Range

‘Step 2: Add a new sheet with column headers
 Worksheets.Add
 Range(“A1:F1”) = Array(“Pivot Name”, “Worksheet”, _
 “Location”, “Cache Index”, _
 “Source Data Location”, _
 “Row Count”)

‘Step 3: Start Cursor at Cell A2 setting the anchor here
 Set MyCell = ActiveSheet.Range(“A2”)

‘Step 4: Loop through each sheet in workbook
 For Each ws In Worksheets

‘Step 5: Loop through each PivotTable
 For Each pt In ws.PivotTables
 MyCell.Offset(0, 0) = pt.Name
 MyCell.Offset(0, 1) = pt.Parent.Name
 MyRange.Offset(0, 2) = pt.TableRange2.Address
 MyRange.Offset(0, 3) = pt.CacheIndex
 MyRange.Offset(0, 4) = Application.ConvertFormula _
 (pt.PivotCache.SourceData, xlR1C1, xlA1)
 MyRange.Offset(0, 5) = pt.PivotCache.RecordCount

‘Step 6: Move Cursor down one row and set a new anchor
 Set MyRange = MyRange.Offset(1, 0)

‘Step 7: Work through all PivotTables and worksheets
 Next pt
 Next ws

‘Step 8: Size columns to fit
 ActiveSheet.Cells.EntireColumn.AutoFit
End Sub

1. Step 1 declares an object called ws. This creates a memory container for each
worksheet we loop through. We then declare an object called pt, which holds each
PivotTable we loop through. Finally, we create a range variable called MyCell. This
variable acts as our cursor as we fill in the inventory summary.

2. Step 2 creates a new worksheet and adds column headings that range from A1 to F1.
Note that we can add column headings using a simple array that contains our header
labels. This new worksheet remains our active sheet from here on out.

12

3. Just as you would manually place your cursor in a cell if you were to start typing data,
Step 3 places the MyCell cursor in cell A2 of the active sheet. This is our anchor point,
allowing us to navigate from here. Throughout the macro, you see the use of the Offset
property. The Offset property allows us to move a cursor x number of rows and x
number of columns from an anchor point. For instance, Range(A2).Offset(0,1) would
move the cursor one column to the right. If we wanted to move the cursor one row
down, we would enter Range(A2). Offset(1, 0). In the macro, we navigate by using
Offset on MyCell. For example, MyCell. Offset(0,4) would move the cursor four
columns to the right of the anchor cell. After the cursor is in place, we can enter data.

4. Step 4 starts the looping, telling Excel we want to evaluate all worksheets in this
workbook.

5. Step 5 loops through all the PivotTables in each worksheet. For each PivotTable it finds,
it extracts out the appropriate property and fills in the table based on the cursor
position (see Step 3). We are using six PivotTable properties: Name, Parent.Range,
TableRange2. Address, CacheIndex, PivotCache.SourceData, and PivotCache.
Recordcount. The Name property returns the name of the PivotTable. The
Parent.Range property gives us the sheet where the PivotTable resides. The
TableRange2.Address property returns the range that the PivotTable object sits in. The
CacheIndex property returns the index number of the pivot cache for the PivotTable.
A pivot cache is a memory container that stores all the data for a PivotTable. When
you create a new PivotTable, Excel takes a snapshot of the source data and creates a
pivot cache. Each time you refresh a PivotTable, Excel goes back to the source data and
takes another snapshot, thereby refreshing the pivot cache. Each pivot cache has a
SourceData property that identifies the location of the data used to create the pivot
cache. The PivotCache. SourceData property tells us which range will be called upon
when we refresh the PivotTable. You can also pull out the record count of the source
data by using the PivotCache.Recordcount property.

6. Each time the macro encounters a new PivotTable, it moves the MyCell cursor down a
row, effectively starting a new row for each PivotTable.

7. Step 7 tells Excel to loop back around to iterate through all PivotTables and all
worksheets. After all PivotTables have been evaluated, we move to the next sheet.
After all sheets have been evaluated, the macro moves to the last step.

8. Step 8 finishes off with a little formatting, sizing the columns to fit the data.

Macro 12: Function Sum by color

Function SumByFontColor(rng As Range, fontColorCell As Range) As Double

Dim cell As Range
Dim sum As Double
Dim targetColor As Long

'Define the font color from cell G3
targetColor = fontColorCell.Font.Color
sum = 0
For Each cell In rng

'Check if the font color of the cell matches the target color
If cell.Font.Color = targetColor Then
If IsNumeric(cell.Value) Then ' Check if the cell contains a number

13

sum = sum + cell.Value
End If
End If
Next cell
SumByFontColor = sum

End Function

Function CountByFontColor(rng As Range, fontColorCell As Range) As Long

Dim cell As Range
Dim count As Long
Dim targetColor As Long

'Define the font color from cell G3
targetColor = fontColorCell.Font.Color
count = 0
For Each cell In rng

'Check if the font color of the cell matches the target color
If cell.Font.Color = targetColor Then
count = count + 1
End If
Next cell
CountByFontColor = count

End Function

Macro: Highlight difference in columns
Sub columnDifference ()

Range("H7:H8,I7:I8").Select
Selection.ColumnDifferences(ActiveCell).Select
Selection.Style = "Bad"

End Sub

Macro: highlight difference in rows
Sub rowDifference ()

Range("H7:H8,I7:I8").Select
Selection.RowDifferences(ActiveCell).Select
Selection.Style = "Bad"

End Sub

