
Topic 2: Fine-scale analysis of population structure based on genomic data and 

quantification of selection effect on livestock genome 

Study material 

 

Advances in biotechnology and DNA sequencing of livestock have enabled the 

optimization of breeding strategies to preserve diversity and the productive potential of animal 

genetic resources without pedigree analysis. Among the most widely used genetic markers 

today in this context are single nucleotide polymorphisms (SNPs). SNP markers are classified 

as biallelic markers, which means that three groups of individuals can be expected to occur in 

the population: dominant homozygotes, heterozygotes and recessive homozygotes. If diversity 

in the population has not declined, the ratio of these groups should be 25:50:25. Loss of 

diversity usually occurs as a result of inbreeding, where the proportion of homozygous versus 

heterozygous animals in a population increases, while at the same time, the overall level of 

biodiversity decreases.  

Currently, SNP chips with low (at least 3,000 – 6,000 SNPs) or high (50,000 – 777,000 

SNPs) marker density and whole genome sequences (2 million or more bases) are primarily 

used to quantify the biodiversity level in livestock, companion animals, and, in some cases, 

wild animals. SNP chips with at least 50,000 SNP markers cover a substantial portion of the 

genome because the SNP markers themselves are distributed evenly across all chromosomes in 

the genome. SNP chips are available for nearly all livestock species and some companion 

animals (cattle, horses, sheep, goats, pigs, poultry, dogs, and cats). A major proportion of SNP 

markers included in these chips are selectively neutral; however, a certain proportion is located 

directly in regions encoding proteins and regulatory sequences (Hayes and Goddard, 2010). 

Because SNP chips provide a comprehensive overview of genome structure, this technology 

has become the most popular tool worldwide for determining the genetic predisposition of 

individuals and populations, increasing genetic gain and preserving the gene pool of animal 

genetic resources. The current cost of genotyping using 50K SNP chips (50,000 SNP markers) 

is comparable to paternity testing through several microsatellite markers (for example, 

approximately 25 euros per individual for cattle and sheep), making this type of analysis also 

financially efficient. 

Compared to other types of genetic markers (e.g., microsatellites, RFLP, or AFLP 

markers), SNP chips provide much more robust information about the genetic makeup of 

individuals, allowing more precise estimation of biodiversity indicators in populations and their 

relationships to each other (Lenstra et al., 2012). Genomic information obtained using SNP 

chips can be successfully used to estimate various genomic diversity parameters, including the 

genomic inbreeding coefficient (Moravčíková et al., 2017; Kasarda et al., 2019), the level of 

linkage disequilibrium, trends in effective population size (Kukučková et al., 2017a,b; 

Moravčíková et al., 2017; Kasarda et al., 2021a,b), genetic differentiation, and degree of 

population admixture (Moravčíková et al., 2015; Kukučková et al., 2017a; Moravčíková et al., 

2021), or to identify selection signals in the genome (Moravčíková et al., 2019a,b,c). 

 

Genetic Structure of Populations 

The genetic structure of populations represents their diversity at both intra- and inter-

population levels. Calculation of genetic distances is commonly used to determine differences 

between individuals and populations, representing the molecular equivalent of the relatedness 

coefficient derived from pedigree data. Genetic distance measures the genetic difference 

(genomic variation, e.g., in allele frequencies) between species or populations, which can be 

quantified using various statistical approaches (Kasarda et al., 2021a). Mathematically, genetic 

distances can be simply determined using the calculation of Nei’s genetic distance (Nei, 1972), 

Wright’s FST index (Wright, 1940), or visualized via principal component analysis (Jombart and 



Ahmed, 2011), or by constructing phylogenetic trees based on IBD matrices (Neuditschko et 

al., 2012). 

Another method for determining genetic differentiation within and between populations 

is cluster analysis, which also allows for estimating the degree of genetic admixture between 

populations or breeds. Genetic admixture is a phenomenon that can result from introgression 

and hybridization of individuals, populations, or species. Introgression describes the “flow” of 

alleles from one population of a species (typically non-native) or subspecies into another 

population (native to a given locality). The proportion of genetic variants defining the degree 

of uniqueness of a population or the degree of admixture with other populations is usually 

determined by a Bayesian approach (Toro et al., 2014; Jombart and Collins, 2015). 

Bayesian statistics is a branch of modern statistics that works with conditional probability 

and allows to refine the probability of the initial hypothesis in the sequence as other relevant 

facts appear. The basis of its mathematical model is Bayes’ theorem. While classical statistics 

determines the probability of an event based on known facts from the past, Bayesian statistics 

is used wherever this is not possible. In population genetics, Bayesian statistics is most often 

used to estimate the degree of genetic admixture between populations by comparing the 

frequencies of alleles that define certain populations or specific groups with the frequencies 

found in individuals. However, its use is much broader because it is fundamentally an estimate 

of the probability of a given phenomenon occurring in the test population. The accuracy of this 

method in terms of estimating population differentiation and determining the degree of 

admixture is often limited by the low number of individuals in the population or the low number 

of genetic markers. Genetic markers used for this type of analysis should be selectively neutral, 

not affected by mutation, and in linkage equilibrium with each other. The most commonly used 

statistical program in this context is Structure (Pritchard et al., 2000), which analyzes genetic 

differences between populations using a Bayesian approach and Markov Chain Monte Carlo 

(MCMC) estimation. The MCMC process begins by randomly assigning individuals to a 

predetermined number of groups in which individuals potentially share similar types of 

variations. The MCMC process starts by randomly dividing individuals into a predefined 

number of groups in which individuals potentially share similar types of variation. Then, the 

frequencies in each group are estimated and based on their values, individuals are divided into 

clusters. This process is repeated several times, usually in 10,000 to 100,000 replications, 

leading to reliable estimates of the membership of individuals in each population as well as the 

degree of genetic admixture between them (Kadlečík et al., 2017). 

 

Impact of Selection on Genome Structure 

In the genomic information era, the impact of natural and artificial selection on the 

genome of animal genetic resources can be quantified without access to phenotypic 

information. Selection signals can be identified in coding and non-coding regions of genes, 

depending on the statistical approach used (Qanbari and Simianer, 2014). The choice of method 

for detecting regions affected by selection pressure depends on the nature of the selection 

signals as well as the time over which selection has acted on the genome. The number of 

identified selection signals is influenced by various factors, including the intensity of selection, 

recombination rate, and the relative age of neutral alleles located near loci affected by selection 

pressure. 

Methods for detecting loci under selection are divided into several groups based on the 

methodological approach applied. Testing for selection signals reflecting differences between 

populations due to different types of selection typically uses the determination of Wright’s FST 

index, analysis of linkage disequilibrium variability, or calculation of the integrated haplotype 

score (Kukučková et al., 2017a,b; Moravčíková et al., 2019b). Determination of signals 

resulting from selection pressure on the genome of a specific population in order to achieve a 



breeding standard or breeding goal is based in most cases on screening homozygous regions in 

the genome and determination of the integrated haplotype score (Moravčíková et al., 2019c; 

Kasarda et al., 2021b; Moravčíková et al., 2021). 

 

Wright’s FST index 

One of the most commonly used approaches for detecting selection signals is calculating 

the genome-wide fixation index, Wright’s FST, which reflects differences in allele frequencies 

of tested genetic markers between two or more populations. Wright’s FST index also quantifies 

the level of genetic differentiation or fragmentation of the total population, expressed by a 

reduction in heterozygosity within individual subpopulations due to genetic drift. It is also 

referred to as the coefficient of relatedness and is defined as the correlation between gametes 

of subpopulations relative to randomly selected gametes from the total population (Weir and 

Cockerham, 1984). 

Theoretically, Wright’s FST index can range from 0 to 1, where extreme values represent 

complete genetic identity of populations (FST = 0) or, conversely, their complete genetic 

differentiation (FST = 1). Two types of signals may arise when using the FST index. In the first 

type, the value of the FST index increases in the selection signal region represented by multiple 

loci located close to each other due to the “hitchhiking” effect. This type of selection signal 

corresponds to differences in the direction of selection utilized within individual breeds. On the 

other hand, when loci with very low FST values are located within the selection signal region, 

they represent genomic regions subject to the same type of selection across breeds (Qanbari et 

al., 2011). Although several modifications of this method have been developed, the FST index 

is considered one of the most appropriate indicators of genomic signals of positive selection 

resulting from genetic differentiation between populations (Fumagalli et al., 2013). 

 

Principal Component Analysis 

Positive natural selection or local adaptation are driving forces enabling individuals to 

adapt to the environmental conditions in which they live. Genome screening to detect genetic 

variants potentially involved in this process typically relies on genetic differentiation between 

populations, similar to the fixation index FST, assuming that extreme values correspond to 

candidate regions within the genome (Duforet-Frebourg et al., 2016). While high levels of 

differentiation between populations may result from various processes, it is assumed that 

individual adaptation to environmental conditions (in the case of livestock, production-related) 

is one possible explanation for these changes, specifically within certain genomic regions. An 

alternative method of detecting selection signals based on this theoretical basis utilizes principal 

component analysis (Duforet-Frebourg et al., 2014). 

Principal component analysis (PCA) is arguably the most widely used multivariate 

statistical method and has applications across various scientific fields, including genetics. PCA 

represents a method to visualize high-dimensional data, such as genomic information on 

individuals or populations, in smaller dimensions. It has become popular in genomics, 

particularly as a tool to reduce the number of initially correlated variables (allele frequencies) 

to a smaller set of linearly uncorrelated (independent) variables, also known as principal 

components, which explain variance in the dataset and thus can be used to represent 

relationships among individuals or populations (Duforet-Frebourg et al., 2016). 

In the context of detecting selection signals, PCA has three main advantages over other 

approaches: it operates at the individual level, the computation time is relatively short compared 

to methods that use MCMC algorithms, and candidate loci potentially associated with the local 

adaptation of populations to environmental conditions correspond to individual principal 

components (Duforet-Frebourg et al., 2016; Luu et al., 2017). For example, screening of 



selection signals through PCA was applied in cattle (Moravčíková et al., 2018; Kasarda et al., 

2021a). 

 

Variation in Linkage Disequilibrium and Integrated Haplotype Score 

Several statistical tests have been developed to identify selection signals resulting from 

changes in linkage disequilibrium (LD) within population genomes (Sabeti et al., 2002; Kim 

and Nielsen, 2004; Voight et al., 2006; Kimura et al., 2007). However, this type of selection 

signal tends to be temporary, as recombination may alter the sequence of the selected locus 

before it becomes fixed in the population’s gene pool in some cases. 

One approach to detecting selection signals reflecting LD changes is the long-range 

haplotype (LRH) test, which assesses the relationship between allele frequencies and LD levels. 

This test is based on identifying target haplotypes through SNP marker genotyping within short 

genome segments where no recombination occurs. Subsequently, additional SNP markers are 

analyzed with increasing distance from the target haplotypes to assess the decline in LD as 

genetic distance increases. The overall LD level, with increasing distance from the target 

haplotypes, is evaluated by calculating the extended haplotype homozygosity (EHH) value, 

representing the probability that two chromosomes carrying specific target haplotypes remain 

homozygous for the entire region from the target distance to distance x. The relative EHH 

(REHH) value is used to compare the decline of EHH for a specific target haplotype with the 

decline of EHH across all other haplotypes. Selection signals are then identified by comparing 

REHH value and frequency of each target haplotype with REHH values and frequencies of 

other target haplotypes. A target haplotype with a high REHH value and a high population 

frequency can be considered a signal of positive selection (Sabeti et al., 2002). Another test to 

identify selection signals is based on the integrated haplotype score (iHS). This test has been 

developed especially with regard to the increasing genotyping of populations using SNP chips. 

The iHS value can simply be defined as the extent to which a haplotype composed of specific 

SNP markers differs from the rest of the genome. In this approach, each SNP is scored as a 

target and the test starts by calculating the EHH value for each SNP marker. SNP markers as 

biallelic loci can be either inherited (ancestral) or derived. The calculation determines the 

integral of the observed decrease in EHH of the target SNP marker until it reaches an EHH 

value of 0.05. This value is considered the integrated EHH (iHH) and is identified as iHHA or 

iHHD depending on whether it was calculated from the ancestral (A) or derived allele (D) of the 

target SNP marker. The obtained value is standardized for direct comparison with other SNP 

markers regardless of their allele frequencies (Voight et al., 2006). Due to its applicability to 

robust genomic data, the iHS score has been successfully applied to various breeds and 

livestock species (Kukučková et al., 2017b; Moravčíková et al., 2019c). 

Because LRH and iHS tests are based on allele frequencies in target haplotypes, they are 

limited in terms of detecting selection signals, especially if the allele under selection is fixed in 

the genome in a homozygous form. If such an allele is fixed in homozygous form in one 

population but remains polymorphic in another, the LRH test can only be based on a comparison 

between these populations. The XP-EHH statistic is defined as the normalized log ratio between 

IA and IB, where IA is the integral of the observed decrease in EHH from the target SNP to SNP 

X (which has an EHH value as close as possible to 0.04 in both populations) in population A, 

and IB expresses the same calculation, but for population B. A very similar principle is used in 

the method referred to as the ln(Rsb) statistic (Sabeti et al., 2007; Tang et al., 2007). 

Another method for detecting selection signals reflecting LD changes is based on 

determining haplotype allelic categories (HAC). This metric is defined as the sum of allelic 

differences between reference allelic categories and individual haplotypes within the sample. 

Positive values indicate positive selection in the specified genomic region (Hussin et al., 2010). 

 



 

Distribution of Runs of Homozygosity (ROH) in the Genome 

Screening for selection signals derived from ROH distribution in the genomes of livestock and 

companion animals is based on the assumption that genomic regions exhibiting strong selection 

signals result from increased local homozygosity due to intensive breeding for traits defined in 

the breed standard (Curik et al., 2014; Kim et al., 2017). The resulting ROH segments located 

close to each other within the genome are composed of alleles inherited from common ancestors 

and passed down through generations in an unchanged form (Biscarini et al., 2014). Identifying 

and analyzing these segments provides insights into the changes that have shaped the genome 

of breeds or populations and serves as a valuable tool for assessing the demographic history of 

each breed’s development. This approach to tracking the effect of selection on population 

genome structure has been used to screen selection signals in many livestock and companion 

animal species (e.g., Moravčíková et al., 2019c; Kasarda et al., 2021b; Moravčíková et al., 

2021). 
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