Numeral systems

Numeric system is a system for displaying numbers using characters

Numeral systems

\Rightarrow non positional :
> During the Roman Empire or Ancient Greece, the Roman numerals were used, the value of which did not depend on the position where the digit number is located.
> Equivalents of Roman and decimal numerals gives the following table:

Decimal numeral	1	2	3	4	5	6	7	8	9
Roman numeral	I	II	IIII	IV	V	VI	VII	VIII	IX
Decimal number	10	50	100	500	1000				
Roman number	X	L	C	D	M				

Numeral systems

\Rightarrow positional:
> numbers and theirs record, as we know them today introduced Arabs
> Recording numbers using characters 0 to 9 and position to express units, hundreds, tens, etc.
> Positional notation is one that reflects any polynomial number N :

$$
\begin{gathered}
N=Z_{n} P^{n}+Z_{n-1} P^{n-1}+\ldots+Z_{1} P^{1}+Z_{0} P^{0}+Z_{-1} P^{-1}+Z_{-2} P^{-2}+\ldots+ \\
\\
+Z_{-m} P^{-m}=\sum_{i=-m}^{n} Z_{i} P^{i} \quad \begin{array}{l}
P-\text { base of numeral system, } \\
Z_{i}-\text { characters used in numeral sys. } \\
i \in\langle-\mathrm{m}, \mathrm{n}\rangle .
\end{array}
\end{gathered}
$$

Base of numeral system

> can be any number
> practical significance in terms of information technology are just some of the numeral system:
> decimal (decimal) - base NS = 10
> usable characters: 0,1,2,3,4,5,6,7,8,9
> binary (Binary) - base NS = 2
> applicable codes: 0,1
> Octal - base NS = 8
> applicable codes: 0,1,2,3,4,5,6,7
> Hexadecimal - base NS = 16
> usable characters: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E$ and F.

Decimal NS

> In everyday life, the most often used NS in calculations is the decimal numeric system that uses 10 characters (numbers $0,1,2,3,4,5,6,7,8$ and 9).
> Eg. decimal number 328,75 can be entered as: 3×10^{2} $+2 \times 10^{1}+8 \times 10^{0}+7 \times 10^{-1}+5 \times 10^{-2}$
> The full registration of each decimal number can be entered using the polynomial:

$$
\begin{aligned}
& Z_{n} 10^{n}+Z_{n-1} 10^{n-1}+Z_{n-2} 10^{n-2}+\ldots+Z_{1} 10^{1}+Z_{0} 10^{0}+Z_{-1} 10^{-1}+Z_{-2} 10^{-2}+\ldots+ \\
& +Z_{-m+1} 10^{-m+1}+Z_{-m} 10^{-m}
\end{aligned}
$$

- •
 Binary NS

> binary notation makes sense since the founding of the first electronic computers,
> the fastest and most reliable electronic components of PCs are those, which have two stable states,
> the physical elements of their activities directly models characters of binary notation,
> all information in the present computers are stored using two digits: 0 and 1 (not voltage $=0$, the voltage $=1$).
> Basic unit of information is called 1 bit (Binary digit a binary number).

Writing numbers in binary notation

$P=10$	$P=2$	
0	0.2^{0}	0
1	1.2^{0}	1
2	$1.2^{1}+0.2^{0}$	10
3	$1.2^{1}+1.2^{0}$	11
4	$1.2^{2}+0.2^{1}+0.2^{0}$	100
5	$1.2^{2}+0.2^{1}+1.2^{0}$	101
6	$1.2^{2}+1.2^{1}+0.2^{0}$	110
7	$1.2^{2}+1.2^{1}+1.2^{0}$	111
8	$1.2^{3}+0.2^{2}+0.2^{1}+0.2^{0}$	1000
9	$1.2^{3}+0.2^{2}+0.2^{1}+1.2^{0}$	1001
10	$1.2^{3}+0.2^{2}+1.2^{1}+0.2^{0}$	1010

$\bullet \bullet$
 Octal and hexadecimal NS

> Base of Octal numerical system is $\mathrm{P}=8$, and allowed characters are the digits $0,1,2,3,4,5,6,7(Z i)$
> Base of hex (hexadecimal) notation is $P=16$ and allowed characters are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F (Zi)
> In NS with lower basis < 10, no problem with characters. Use the same digits as decimal from 0 to P.
> In hexadecimal notation, it is necessary to add six more characters to decimal digits - a big alphabet letters.

Numbers in Octal and Hexadecimal NS

$\mathrm{P}=10$	$\mathbf{P}=8$		$P=16$	
0	$0.8{ }^{0}$	0	$0.16{ }^{0}$	0
1	$1.8{ }^{0}$	1	$1.16{ }^{0}$	1
2	$2.8{ }^{0}$	2	$2.16{ }^{0}$	2
3	$3.8{ }^{0}$	3	$3.16{ }^{0}$	3
4	$4.8{ }^{0}$	4	$4.16{ }^{0}$	4
5	$5.8{ }^{0}$	5	$5.16{ }^{0}$	5
6	$6.8{ }^{0}$	6	$6.16{ }^{0}$	6
7	$7.8{ }^{0}$	7	$7.16{ }^{0}$	7
8	$1.8{ }^{1}+0.8^{0}$	10	$8.16{ }^{0}$	8
9	$1.8{ }^{1+1.80}$	11	$9.16{ }^{0}$	9
10	$1.8^{1}+2.8^{0}$	12	$10.16{ }^{0}$	A
11	$1.8^{1}+3.8^{0}$	13	$11.16{ }^{0}$	B
12	$1.8{ }^{1}+4.8^{0}$	14	$12.16{ }^{0}$	C
13	$1.8^{1}+5.8^{0}$	15	$13.16{ }^{0}$	D
14	$1.8^{1}+6.8^{0}$	16	$14.16{ }^{0}$	E
15	$1.8{ }^{1}+7.8^{0}$	17	$15.16{ }^{0}$	F
16	$2.8^{1}+0.8^{0}$	20	$1.16{ }^{1+0.16}{ }^{0}$	10
17	$2.8{ }^{1}+1.8^{0}$	21	$1.16{ }^{1+1.16}{ }^{0}$	11
18	$2.8^{1}+2.8^{0}$	22	$1.16{ }^{1+2.16}{ }^{0}$	12
19	$2.8^{1}+3.8^{0}$	23	$1.16{ }^{1}+3.16{ }^{0}$	13
20	$2.8^{1}+4.8^{0}$	24	$1.16{ }^{1+4.16}{ }^{0}$	14

NS in terms of computer work

> The computer works with numbers in binary notation.
> Binary numbers are usually very long and disarranged sequence of zeros and units.
> For easier recording of binary numbers are used octal or hexadecimal notation.

Transfer between binary, octal and hexadecimal is very simple.

Transfer numbers from decimal NS to system with base P

The best way to transfer is dividing decimal numbers N10 with the base P and recording residues after dividing, which is actually the number $N P$ in the chosen notation.
Transferring numbers is realized by repeated division by based P.
Example:
Transfer of the number $[39]_{10}$ to binary numeral system.

$39: 2$	$=19$
$19: 2$	$=9$
$9: 2$	$=4$
$4: 2$	$=2$
$2: 2$	$=1$
$1: 2$	$=0$
$[39]_{10}$	$=[100111]_{2}$

Transfers between numeral systems

Transfer from a numerical system with base P to decimal is easy.
Transfer via calculating a formula:

$$
N=\sum_{i=-m}^{n} Z_{i} \cdot P^{i}
$$

Transfer of the binary number system [1101010101]2 to decimal.
9. 8. 7. 6. 5. 4. 3. 2. 1. 0 .

$\left[\begin{array}{llllllllll}1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]_{2}=$
$=1.2^{0}+0.2^{1}+1.2^{2}+0.2^{3}+1.2^{4}+0.2^{5}+1.2^{6}+0.2^{7}+1.2^{8}+1.2^{9}=$
$=1+0+4+0+16+0+64+0+256+512=[853]_{10}$

Transfer numbers from decimal NS to system with base P

Transfer from decimal to octal NS:

Example:

Transfer of the number $[250]_{10}$ to octal numeral system.
$\left.\begin{array}{rlrl}250: 8 & =31 & 2 & 2\end{array} \begin{array}{l}\text { Remains after } \\ 31: 8\end{array}\right)$

Test of an accuracy: $2.8^{0}+7.8^{1}+3.8^{2}=2+56+192=[250]_{10}$

..
 Transfer between binary and octal notation:

Rule for bases: $2^{3}=8^{1}$,

-> three orders of magnitude of binary number are shown by one order of magnitude of octal number.
Transfer of the number [11101011010] ${ }_{2}$ to octal numeral system.
Conversion process is as follows:

- divide the number by three digits from right to left,
- each triplet of digits is converted to an octal numeral system.

[11 1 $101|011| 010]_{2}=\left[\begin{array}{lll}3 & 5 & 3\end{array}\right]_{8}$

Transfer of the number [351] ${ }_{8}$ to binary numeral system.
Process: each digit of octal number is converted to three-digit number in binary numeral system (from the left enter zero, for example number $[1]_{8}$ is $[001]_{2}$).

```
[\begin{array}{llll}{3}&{5}&{1}\end{array}]}\mp@subsup{]}{8}{}=[\begin{array}{llllllll}{11}&{101 001}\end{array}
0 1 1 1 0 1 ~ 0 0 1 ~
```


Transfer between binary and hexadecimal notation:

Rule for bases: $2^{4}=16^{1}$,
-> four orders of magnitude of binary number are shown by one order of magnitude of hexadecimal number.
Transfer of the number [11101011010] ${ }_{2}$ to hexadecimal numeral system.
Conversion process is as follows:

- divide the number by four digits from right to left,
- each quartet of digits is converted to an hexadecimal numeral system.

$$
[11101011010]_{2}=[75 A]_{16}
$$

Transfer of the number $[B 71 C]_{16}$ to binary numeral system.
Process: each digit of hexadecimal number is converted to four-digit number in binary numeral system (from the left enter zero, for example number $[1]_{16}$ is $[0001]_{2}$).

```
[ B 7 7 1 C C ] [16 =[ [1011 0111 0001 1100] [
```

 1011011100011100

Arithmetic operations in binary NS

> are easier than in decimal system,
> rules for the implementation of arithmetic operations should be remembered only for two digits, which may occur in a row.
> The rules for arithmetic operations in binary notation are as follows:

Addition:
$0+0=0$
$0+1=1$
$1+0=1$
$1+1=10$
$10-1=1$

Multiplication:
$0 \times 0=0$
$0 \times 1=0$
$1 \times 0=0$
$1 \times 1=1$

Examples of binary addition

Ex.1.: Addition of two numers $[9]_{10}$ and $[6]_{10}$ in binary NS.

$$
\begin{aligned}
{[6]_{10} } & =\left[\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right]_{2} \\
{[9]_{10} } & =\left[\begin{array}{lllll}
1 & 0 & 0 & 1
\end{array}\right]_{2} \\
\hline[15]_{10} & =\left[\begin{array}{lllllll}
1 & 1 & 1 & 1
\end{array}\right]_{2}
\end{aligned}
$$

Ex.1.: Addition of two numers [94]10 and [90]10 in binary NS.
When adding two units[1] in a row, it is used a transfer to higher order

	1111
$[94]_{10}=$	[10\$1 10$]_{2}$
$[90]_{10}=$	[1011010]
$[184]_{10}=$	[10111000]

$\bullet \bullet \bullet$

The End

