• • • • Logical basics of digital computers

Numeral systems

Numeric system is a system for displaying numbers using characters

Numeral systems

⇒ non positional :

- During the Roman Empire or Ancient Greece, the Roman numerals were used, the value of which did not depend on the position where the digit number is located.
- Equivalents of Roman and decimal numerals gives the following table:

Decimal numeral	1	2	3	4	5	6	7	8	9
Roman numeral	I		III	IV	V	VI	VII	VIII	IX
Decimal number	10	50	100	500	1000				
Roman number	X	L	С	D	М				

Numeral systems

- ⇒ positional:
- > numbers and theirs record, as we know them today introduced Arabs
- Recording numbers using characters 0 to 9 and position to express units, hundreds, tens, etc.
- Positional notation is one that reflects any polynomial number N:

$$N = Z_n P^n + Z_{n-1} P^{n-1} + \ldots + Z_1 P^1 + Z_0 P^0 + Z_{-1} P^{-1} + Z_{-2} P^{-2} + \ldots + Z_{-2} P^{-2$$

$$+Z_{-m}P^{-m}=\sum_{i=-m}^{n}Z_{i}P^{i}$$

P – base of numeral system, Z_i – characters used in numeral sys. i∈⟨-m, n⟩.

Base of numeral system

- can be any number
- > practical significance in terms of information technology are just some of the numeral system:
- > decimal (decimal) base NS = 10
- usable characters: 0,1,2,3,4,5,6,7,8,9
- binary (Binary) base NS = 2
- > applicable codes: 0,1
- > Octal base NS = 8
- > applicable codes: 0,1,2,3,4,5,6,7
- Hexadecimal base NS = 16
- usable characters: 0,1,2,3,4,5,6,7,8,9, A, B, C, D, E and F.

• • • Decimal NS

 $+Z_{-m+1}10^{-m+1}+Z_{-m}10^{-m}$

- In everyday life, the most often used NS in calculations is the decimal numeric system that uses 10 characters (numbers 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9).
- Eg. decimal number 328,75 can be entered as: 3x10² +2 x10¹ +8 x10⁰ +7 x10⁻¹ +5 x10⁻²
- > The full registration of each decimal number can be entered using the polynomial:

 $Z_{n}10^{n} + Z_{n-1}10^{n-1} + Z_{n-2}10^{n-2} + \ldots + Z_{1}10^{1} + Z_{0}10^{0} + Z_{-1}10^{-1} + Z_{-2}10^{-2} + \ldots + Z_{1}10^{-1} + Z_{-2}10^{-1} + Z_{-2}10^{-1} + \ldots + Z_{1}10^{-1} + Z_{1}10^{-1} + Z_{-2}10^{-1} + \ldots + Z_{1}10^{-1} + Z_{1}$

Base of numeral system P = 10

• • • Binary NS

- binary notation makes sense since the founding of the first electronic computers,
- > the fastest and most reliable electronic components of PCs are those, which have two stable states,
- > the physical elements of their activities directly models characters of binary notation,
- > all information in the present computers are stored using two digits: 0 and 1 (not voltage = 0, the voltage = 1).
- Basic unit of information is called 1 bit (Binary digit a binary number).

• • • Writing numbers in binary notation

P = 10	P = 2	
0	0.20	0
1	1.20	1
2	$1.2^{1}+0.2^{0}$	10
3	$1.2^{1}+1.2^{0}$	11
4	$1.2^2+0.2^1+0.2^0$	100
5	$1.2^2+0.2^1+1.2^0$	101
6	$1.2^2 + 1.2^1 + 0.2^0$	110
7	$1.2^2 + 1.2^1 + 1.2^0$	111
8	$1.2^3 + 0.2^2 + 0.2^1 + 0.2^0$	1000
9	$1.2^3 + 0.2^2 + 0.2^1 + 1.2^0$	1001
10	$1.2^3 + 0.2^2 + 1.2^1 + 0.2^0$	1010

Octal and hexadecimal NS

- Base of Octal numerical system is P = 8, and allowed characters are the digits 0, 1, 2, 3, 4, 5, 6, 7 (Zi)
- Base of hex (hexadecimal) notation is P = 16 and allowed characters are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F (Zi)
- In NS with lower basis < 10, no problem with characters. Use the same digits as decimal from 0 to P.
- In hexadecimal notation, it is necessary to add six more characters to decimal digits - a big alphabet letters.

Numbers in Octal and Hexadecimal NS

P = 10	P = 8		P = 16		
0	0.8 ⁰	0	0.16 ⁰	0	
1	1.80	1	1.16 ⁰	1	
2	2.80	2	2.160	2	
3	3.8 ⁰	3	3.160	3	
4	4.8 ⁰	4	4.16 ⁰	4	
5	5.8 ⁰	5	5.16 ⁰	5	
6	6.8 ⁰	6	6.16 ⁰	6	
7	7.8 ⁰	7	7.16 ⁰	7	
8	1.8¹+0.8⁰	10	8.16 ⁰	8	
9	$1.8^{1}+1.8^{0}$	11	9.16 ⁰	9	
10	$1.8^{1}+2.8^{0}$	12	10.16 ⁰	Α	
11	1.8 ¹ +3.8 ⁰	13	11.16 ⁰	В	
12	$1.8^{1} + 4.8^{0}$	14	12.160	С	
13	$1.8^{1}+5.8^{0}$	15	13.160	D	
14	1.8¹+6.8⁰	16	14.16 ⁰	Ε	
15	$1.8^{1}+7.8^{0}$	17	15.16 ⁰	F	
16	2.8 ¹ +0.8 ⁰	20	1.16 ¹ +0.16 ⁰	10	
17	2.8 ¹ +1.8 ⁰	21	1.16 ¹ +1.16 ⁰	11	
18	2.81+2.80	22	1.16 ¹ +2.16 ⁰	12	
19	2.8 ¹ +3.8 ⁰	23	1.16 ¹ +3.16 ⁰	13	
20	2.8 ¹ +4.8 ⁰	24	1.16¹+4.16⁰	14	

• • • NS in terms of computer work

- The computer works with numbers in binary notation.
- Binary numbers are usually very long and disarranged sequence of zeros and units.
- For easier recording of binary numbers are used octal or hexadecimal notation.

Transfer between binary, octal and hexadecimal is very simple.

• • • Transfer numbers from decimal NS to system with base P

The best way to transfer is dividing decimal numbers *N*₁₀ with the base P and recording residues after dividing, which is actually the number *N*_P in the chosen notation.

Transferring numbers is realized by repeated division by based P. Example:

Transfer of the number $[39]_{10}$ to binary numeral system.

Transfers between numeral systems

Transfer from a numerical system with base P to decimal is easy.

Transfer via calculating a formula:

$$N = \sum_{i=-m}^{n} Z_i . P^i$$

Transfer of the binary number system [1 1 0 1 0 1 0 1 0 1]2 to decimal.

9. 8. 7. 6. 5. 4. 3. 2. 1. 0.

$$[1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1]_2 =$$

$$= 1.2^0 + 0.2^1 + 1.2^2 + 0.2^3 + 1.2^4 + 0.2^5 + 1.2^6 + 0.2^7 + 1.2^8 + 1.2^9 =$$

$$= 1 \ + \ 0 \ + \ 4 \ + \ 0 \ + \ 16 \ + \ 0 \ + \ 64 \ + \ 0 \ + \ 256 + 512 \ = [853]_{10}$$

• • • Transfer numbers from decimal NS to system with base P

Transfer from decimal to octal NS:

Example:

Transfer of the number [250]₁₀ to octal numeral system.

250: 8 = 31 31: 8 = 3 3: 8 = 0 $[250]_{10} = [372]_8$ Remains after cutting

Test of an accuracy: $2.8^{\circ} + 7.8^{\circ} + 3.8^{\circ} = 2+56+192 = [250]_{10}$

Transfer between binary and octal notation:

Rule for bases: $2^3 = 8^1$,

-> three orders of magnitude of binary number are shown by one order of magnitude of octal number.

Transfer of the number $[11101011010]_2$ to octal numeral system. Conversion process is as follows:

- divide the number by three digits from right to left,
- each triplet of digits is converted to an octal numeral system.

$\begin{bmatrix} 11 & 101 & 011 & 010 \end{bmatrix}_2 = \begin{bmatrix} 3 & 5 & 3 & 2 \end{bmatrix}_8$

Transfer of the number [351]₈ to binary numeral system.

Process: each digit of octal number is converted to three-digit number in binary numeral system (from the left enter zero, for example number $[1]_8$ is $[001]_2$).

$$\begin{bmatrix} 3 & 5 & 1 \end{bmatrix}_8 = \begin{bmatrix} 11 & 101 & 001 \end{bmatrix}_2$$

Transfer between binary and hexadecimal notation:

Rule for bases : $2^4 = 16^1$,

-> four orders of magnitude of binary number are shown by one order of magnitude of hexadecimal number.

Transfer of the number $[11101011010]_2$ to hexadecimal numeral system. Conversion process is as follows:

- divide the number by four digits from right to left,
- each quartet of digits is converted to an hexadecimal numeral system.

111 0101 1010]₂ = [7 5 A]₁₆

Transfer of the number [B71C]₁₆ to binary numeral system.

Process: each digit of hexadecimal number is converted to four-digit number in binary numeral system (from the left enter zero, for example number $[1]_{16}$ is $[0001]_2$).

[B 7 1 C]₁₆ = [1011 0111 0001 1100]₂

1011 0111 0001 1100

• • • Arithmetic operations in binary NS

- > are easier than in decimal system,
- rules for the implementation of arithmetic operations should be remembered only for two digits, which may occur in a row.
- > The rules for arithmetic operations in binary notation are as follows:

Addition:	Subtraction:	Multiplication:
0 + 0 = 0	0 - 0 = 0	$0 \times 0 = 0$
0 + 1 = 1	1 - 0 = 1	0 x 1 = 0
1 + 0 = 1	1 - 1 = 0	$1 \times 0 = 0$
1 + 1 = 10	10 - 1 = 1	1 x 1 = 1

• • • Examples of binary addition

Ex.1.: Addition of two numers $[9]_{10}$ and $[6]_{10}$ in binary NS. $[6]_{10} = [1 \ 1 \ 0 \ 0 \ 1]_2$ $[9]_{10} = [1 \ 1 \ 0 \ 1]_2$ $[15]_{10} = [1 \ 1 \ 1 \ 1]_2$

Ex.1.: Addition of two numers [94]10 and [90]10 in binary NS. When adding two units[1] in a row, it is used a transfer to higher order 1 1 1 1 $[94]_{10} = [1 0, 1, 1 0]_2$

 $[90]_{10} = [1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0]_2$ $[184]_{10} = [1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0]_2$

The End