0:00:00.000,0:00:06.000 Dobrý den, vítám Vás u další přednášky z modulu Animal Breeding, jejímž tématem je: 0:00:06.000,0:00:09.000 Kvantitativní vlastnosti a úsekové koeficienty. 0:00:09.000,0:00:19.000 V přednášce si představíme, co ovlivňuje hodnotu kvalitativních vlastností a dále význam úsekových koeficientů ve šlechtění zvířat. 0:00:19.000,0:00:25.000 Pokud se bavíme o užitkovosti jedince, bavíme se o tzv. fenotypu. 0:00:25.000,0:00:29.000 Protože fenotyp představuje soubor pozorovatelných vlastností a znaků 0:00:29.000,0:00:35.000 vykazovaných jedincem a je funkcí genotypu a prostředí. 0:00:35.000,0:00:43.000 Jedná se tedy o souboru všech znaků a vlastností jedince, které nás z pohledu genetiky zvířat zajímají. 0:00:43.000,0:00:47.000 Pokud budeme vycházet ze základní definice fenotypu, 0:00:47.000,0:00:51.000 tak fenotyp je vždy definován jako funkce genotypu a prostředí, 0:00:51.000,0:01:00.000 v tomto případě jako součet úrovně genotypu, prostředí a vztahu neboli interakce mezi genotypem a prostředím. 0:01:00.000,0:01:05.000 Pokud tento vztah převedeme do fenotypové variability, 0:01:05.000,0:01:11.000 tak fenotypová proměnlivost je ovlivněna proměnlivostí genetickou a proměnlivostí prostřeďovou. 0:01:11.000,0:01:17.000 Kdy genetickou variabilitu je možné rozložit na proměnlivost ovlivněnou aditivní složkou genotypu, 0:01:17.000,0:01:25.000 proměnlivost ovlivněnou složkou dominance a proměnlivost ovlivněnou složkou genových interakcí neboli epistází. 0:01:25.000,0:01:33.000 Prostřeďovou proměnlivost je možné rozdělit na proměnlivost ovlivněnou trvalým či dočasným prostředím. 0:01:33.000,0:01:38.000 Na tomto snímku si vysvětlíme pojmy aditivita, dominance a interakce. 0:01:38.000,0:01:46.000 Pojem aditivita je možné vysvětlit následovně. Každý gen má nějaký účinek, 0:01:46.000,0:01:51.000 obecně se předpokládá, že dominantní alela vykazuje vyšší hodnotu užitkovosti 0:01:51.000,0:01:58.000 (např. v průměru 5 kg) než alela recesivní (např. v průměru 2 kg). 0:01:58.000,0:02:09.000 Genetická hodnota daného jedince, u kterého uvažujeme daný genotyp, pokud je ovlivněna pouze efektem aditivity tak dosahuje hodnoty 38 Kg. 0:02:09.000,0:02:14.000 Tuto hodnotu jsme získali součtem účinků jednotlivých genů. 0:02:14.000,0:02:21.000 Naopak dominance představuje vztah dvou genů na jednom lokusu. 0:02:21.000,0:02:26.000 Například: Pokud existuje, dejme tomu superdominance, to znamená, 0:02:26.000,0:02:31.000 že pokud jsou alely na jednom lokusu heterozygotní sestavě, 0:02:31.000,0:02:36.000 dochází k zvýšení užitkovosti například o 10 kg. 0:02:36.000,0:02:43.000 Genetická hodnota daného genotypu ovlivněna pouze efektem dominance (D) je tedy 20 kg, 0:02:43.000,0:02:50.000 protože daný genotyp obsahuje pouze dva genové páry v heterozygotní stavě. 0:02:50.000,0:02:58.000 A interakce neboli epistází, představuje vztah mezi dvěma geny na různých lokusech. 0:02:58.000,0:03:04.000 Dejme tomu, že existuje vztah mezi dominantní alelou A a dominantní alelou B 0:03:04.000,0:03:08.000 a tento vztah zvyšuje užitkovost dejme tomu o 10 kg. 0:03:08.000,0:03:14.000 V námi uvažovaném genotypu tedy efekt interakce zvýší užitkovost o 20 kg, 0:03:14.000,0:03:20.000 protože genotyp obsahuje jednu dominantní alelu A a dvě dominantní alely B. 0:03:20.000,0:03:26.000 Součtem efektů aditivity, dominance interakce dostáváme celkovou genetickou hodnotu 0:03:26.000,0:03:31.000 a ta činí u námi uvažovaném genotypu 78 kg. 0:03:31.000,0:03:40.000 Z pohledu šlechtění zvířat je důležitý přenos genetické informace z jedinců na následné generace. 0:03:40.000,0:03:44.000 Tento přenos se uskutečňuje pomocí pohlavních buněk neboli gamet. 0:03:44.000,0:03:50.000 Jak již víme gamety nesou poloviční počet chromozomů, jsou tudíž tzv. „haploidní“. 0:03:50.000,0:03:56.000 Jedinec, který disponuje zde uvedeným genotypem, tvoří tyto čtyři typy gamet. 0:03:56.000,0:04:03.000 U každé gamety se vykytuje aditivní účinek genů, protože každá gameta obsahuje geny daného jedince. 0:04:03.000,0:04:10.000 Efekt dominance a interakce tvorbou gamet zaniká, protože gamety jsou haploidní, 0:04:10.000,0:04:13.000 a tudíž nemůže docházet k interakcím na úrovni lokusu. 0:04:13.000,0:04:20.000 U některých gamet se sice efekt interakce také vyskytuje z důvodu náhodné segregace alel. 0:04:20.000,0:04:26.000 Prostřednictvím gamet se předává pouze polovina aditivního genetického efektu. 0:04:26.000,0:04:32.000 Díky tvorbě gamet a přenosu genetického, přesněji řečeno aditivně genetického, 0:04:32.000,0:04:39.000 efektu mezi rodiči a potomky, je možné sledovat genetickou podobnost mezi příbuznými jedinci, 0:04:39.000,0:04:47.000 jako jsou již zmínění rodiče a potomci, ale také, sourozenci, či vzdálenými příbuznými a vzdálenými sourozenci. 0:04:47.000,0:04:53.000 Tuto genetickou podobnost je možné studovat díky tzv. úsekovým koeficientům. 0:04:53.000,0:04:59.000 Úsekové koeficienty, jak již z názvu vyplývá, vymezují vztah, 0:04:59.000,0:05:04.000 či závislost od něčeho k něčemu, tzn. vztah mezi minimálně dvěma proměnnými. 0:05:04.000,0:05:15.000 Obecně rozeznáváme dva typy úsekových koeficientů. První typ, kdy je jedna proměnná plně určena proměnnou další. 0:05:15.000,0:05:20.000 Tento typ odborně nazýváme statistickým pojmem „regrese“. 0:05:20.000,0:05:25.000 A druhý typ, kdy jde o rovnocenné postavení obou proměnných. 0:05:25.000,0:05:30.000 Tento typ odborně nazýváme statistickým pojmem „korelace“ 0:05:30.000,0:05:38.000 Pro práci s úsekovými koeficienty nám postačují pouze dvě následující pravidla. 0:05:38.000,0:05:55.000 Pravidlo prvé: Leží-li mezi proměnnými X a Y další proměnná (e) skládá se úsek od X k Y z dílčích úseků (X-E, E-Y). 0:05:55.000,0:06:03.000 Úsekový koeficient od X k Y dostaneme jako součin dílčích úseků. 0:06:03.000,0:06:12.000 A pravidlo druhé: Je-li mezi dvěma proměnnými možno najít větší počet možných spojení, 0:06:12.000,0:06:20.000 je celkový úsek – celkový úsekový koeficient, roven součtu jednotlivých možných spojení. 0:06:20.000,0:06:29.000 Je potřeba si uvědomit, že jednotlivá možná spojení se mohou skládat ze součinu dílčích úseků. 0:06:29.000,0:06:38.000 Daná pravidla si uvedeme zde na následujícím případu dvou vlastních sourozenců. 0:06:38.000,0:06:44.000 Mezi fenotypem jedince X a jedince Y není žádný vztah. 0:06:44.000,0:06:48.000 Jediný možný vztah je pomocí genetického založení daných jedinců. 0:06:48.000,0:06:53.000 A to přes genetické založení otce tak genetické založení matky. 0:06:53.000,0:07:00.000 Každý jedinec získává díky meioze polovinu genetické výbavy svých rodičů. 0:07:00.000,0:07:03.000 Zde využijeme pravidlo jedna úsekových koeficientů: 0:07:03.000,0:07:15.000 Leží-li mezi proměnnými X a Y další proměnná, skládá se úsek od X k Y ze součinu dílčích úseků. 0:07:15.000,0:07:22.000 V tomto případě 0,5 x 0,5. Toto samé pravidlo platí i pro matku. 0:07:22.000,0:07:31.000 A protože se jedná o vlastní sourozence, kteří mají stejné rodiče, můžeme proto použít pravidlo dvě úsekových koeficientů: 0:7:31.000,0:07:37.000 Je-li mezi dvěma proměnnými X a Y možnos najít větší počet možných spojení, 0:07:37.000,0:07:43.000 je celkový úsekový koeficient roven součtu jednotlivých možných spojení. 0:07:43.000,0:07:55.000 V tomto případě přes otce i přes matku. Z toho vyplývá, že genetický vztah mezi jedincem X a Y je roven hodnotě 0,5. 0:07:55.000,0:08:04.000 Podobně je tomu i u následujícího případu. Kdy opět využijeme obě pravidla úsekových koeficientů. 0:08:04.000,0:08:18.000 Genetický vztah mezi jedincem X a Y je roven hodnotě 0,3125. Mezi jedincem X a Y existují dvě tzv. genetické „cesty“. 0:08:18.000,0:08:30.000 Jedna je vyjádřena červeně a druhá modře. Červená „cesta“ dosahuje hodnotu 0,5^4, opět vycházíme z toho, 0:08:30.000,0:08:38.000 že každý potomek získává 50% genů od svého rodiče, a jednotlivé dílčí úseky se násobí, 0:08:38.000,0:08:44.000 a modrá „cesta“ dosahuje hodnotu 0,5^2, podle shodného pravidla. 0:08:44.000,0:09:01.000 Na konec sečteme hodnoty obou cesty (modré a červené). Tudíž genetická hodnota mezi jedincem X a y je rovna hodnotě 0,3125, jak již bylo uvedeno. 0:09:01.000,0:09:09.000 Podobně postupujeme i u definování genetického vztahu mezi potomkem a vlastními rodiči, 0:09:09.000,0:09:18.000 kdy genetická podobnost je rovná hodnotě jedna, tak genetické podobnosti mezi potomkem a pouze jedním rodičem, 0:09:18.000,0:09:23.000 kdy genetická podobnost je rovna hodnotě 0,5. 0:09:23.000,0:09:32.000 Dále můžeme pokračovat u polosourozenců, kdy genetická podobnost je rovna hodnotě 0,25. 0:09:32.000,0:09:37.000 Vlastních sourozenců, kdy genetická podobnost je rovna hodnotě 0,5 0:09:37.000,0:09:46.000 a například u sestřenice a bratrance, kdy genetická podobnost je rovna hodnotě 0,125. 0:09:46.000,0:09:52.000 Z výše uvedených principů úsekových koeficientů můžeme odvodit zákonitosti, 0:09:52.000,0:09:59.000 které se využívají hlavně v odhadu genetických parametrů, kam patří například koeficientů dědivosti. 0:09:59.000,0:10:05.000 A to, že skupina navzájem příbuzných zvířat má podobné genotypy. 0:10:05.000,0:10:11.000 Proto rozdíly uvnitř skupin příbuzných zvířat v užitkovostech jsou podmíněny především vlivem prostředím. 0:10:11.000,0:10:18.000 A dále že Různé skupiny navzájem nepříbuzných zvířat mají rozdílné genotypy. 0:10:18.000,0:10:32.000 Proto rozdíly v užitkovostech nepříbuzných zvířat jsou způsobeny především v rozdílech aditivně genetické části jejich genofondu. 0:10:32.000,0:10:37.000 V této přednášce byl představena podstata kvalitativních vlastností 0:10:37.000,0:10:44.000 a koncept úsekových koeficientů pro stanovení genetické podobnosti mezi dvěma jedinci. 0:10:44.000,0:10:48.000 Děkuji za pozornost a těším se na setkání u dalšího videa.