

Genetic Parameters in Animal Breeding

Modul No. 3: Animal Breeding

prof. Ing. Tomáš Urban, PhD.

Mendel University in Brno

Faculty of AgriScience

Definition: Genetic Parameters

- Genetic parameters are the values that define the genetic potential and heritability of traits within a population of animals.
- Heritability measures the proportion of the total phenotypic variation in a trait that can be attributed to genetic variation.
 - It ranges from 0 to 1.
- Genetic correlations quantify the degree to which genes influencing one trait also influence another trait (-1 to +1).
 - Positive genetic correlations indicate that improving one trait will also improve another.
 - Negative genetic correlations indicate a trade-off between traits, wherein improving one trait may decrease another.
- Coefficient of repeatability (r)

Methods of estimating genetic parameters

- What is necessary to know?
 - Phenotypic values (measured performance)
 - Relationships (determined using pedigree data or genomic data)
- How do we estimate them?
 - We have to use statistical methods, especially linear models (regression analysis, analysis of variance, analysis of covariance...)
 - Estimate the value of genetic and environmental variance

$$s_P^2 = s_G^2 + s_E^2$$

$$s_P^2 = s_A^2 + s_D^2 + s_I^2 + s_E^2$$

Statistical methods

- Analysis of variance (ANOVA) means of square
 - Balanced data
 - Unbalanced data
 - Henderson's methods (SAS, Harvey, SPSS, ...)
- Likelihood methods
 - Maximum likelihood (ML)
 - restricted maximum likelihood (REML)
- Bayesian Methods
 - Monte Carlo, Gibbs Sampling

Using family performances to estimate heritability

- High heritability
 - **low** variance in families
 - high variance
 between families

Low heritability

- high variance in families
- low variance
 between families

Total var = var between families + var within families

Same as *cov* within families

Variation between and within groups of related individuals

the European Union

Analysis of variance – ANOVA

Principle:

- Detection of important differential effect sources
- Determine their contribution to the total variance
- Variance is derived from the sum of squares and degrees of freedom
- Necessary to have individuals in groups with the same degree of relationship
 - Groups of half-siblings by father
 - parents offspring
- Covariance between members of families or groups = component of variance between groups
- Decomposition of sum of squares (SS) by sources of variance (animal group) and calculation of mean square (MS)

Estimation of h² in families of half-siblings

- Variance between families of half-siblings
 - = covariation between half-siblings in groups = $\frac{1}{4}$ $\frac{V_A}{V_A}$
- Variance within families of half-siblings in groups

= residual variance =
$$V_P - \frac{1}{4} V_A = \frac{3}{4} V_A + V_E + V_D$$

$$h^2 = \frac{V_A}{V_P} = \frac{4V_S}{V_P}$$

Experimental design for sire model

Variance between families of half-siblings = covariation between half-siblings in groups

$$cov_{(sibs)} = cov(y_{ij}, y_{ik}) =$$

$$= \sigma^2_{S}$$

$$4\sigma_{\rm S}^2 = \sigma_{\rm A}^2$$

This can be estimated by ANOVA

Sire model – 1 way ANOVA

• Estimation based on correlation of half-siblings

$$\mathbf{y}_{ij} = \mathbf{\mu} + \mathbf{a}_i + \mathbf{e}_{ij}$$

$$V_S = \sigma_S^2 = \frac{1}{4}\sigma_A^2 \qquad \sigma_y^2 = \sigma_S^2 + \sigma_e^2$$

$$V_e = \sigma_e^2 = \frac{3}{4}\sigma_A^2 + \sigma_E^2$$

- the assumption that fathers and mothers are unrelated, randomly mated, without selection
- balanced design: p sires are mated with n dams $\Rightarrow 1$ offspring

Sire model – ANOVA table

Source of variability	Df	SS	MS	E(MS)
Between families (between fathers)	p – 1	$SS_S = \sum_{i=1}^p n_i (\overline{y}_i - \overline{y})^2$	$MS_S = \frac{SS_S}{(p-1)}$	$\sigma_{\rm e}^2 + {\sf n}_0 \sigma_{\sf g}^2$
Within families (rezidual)	n – p	$SS_e = \sum_{i=1}^{p} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_i)^2$	$MS_e = \frac{SS_e}{(n-p)}$	$\sigma_{ m e}^2$
Total	n – 1	$SS_c = \sum_{i=1}^{p} \sum_{j=1}^{n_i} (y_{ij} - \overline{y})^2$	$MS_c = \frac{SS_c}{(n-1)}$	

$$MS_e \doteq \sigma_e^2$$

$$MS_a = \sigma_e^2 + n_0 \sigma_g^2 = MS_e + n_0 \sigma_g^2$$

$$n_0 = \frac{n - \left(\sum_{i=1}^{n_i^2}\right)}{n-1}$$

$$\sigma_{g}^{2} = \frac{MS_{a} - MS_{e}}{n_{0}}$$

Intraclass correlation coefficient

$$\rho = \mathbf{r}_{\mathsf{i}} = \frac{\sigma_{\mathsf{g}}^2}{\sigma_{\mathsf{g}}^2 + \sigma_{\mathsf{e}}^2}$$

$$h^{2} = 4\rho = 4\frac{\sigma_{g}^{2}}{\sigma_{g}^{2} + \sigma_{e}^{2}} = 4\frac{\sigma_{g}^{2}}{\sigma_{P}^{2}}$$

Finalization of the calculation

- estimation of the coefficient of heritability
- Estimation of standard error of h²

$$\mathbf{Se}_{h^2} = 4.\mathbf{S}_{\rho} = 4.\sqrt{\frac{2.(n-1)(1-\rho)^2(1+(n_0-1)\rho)^2}{n_0(n_0-p)(p-1)}}$$

$$h^2 \pm se_{h^2}$$

Importance of Heritability

- High heritability indicates that phenotypic variability of trait in population is largely influenced by genetic variability.
- Breeding programs can focus on traits with high heritability to achieve faster genetic progress (genetic gain).

Conclusion

- Understanding genetic parameters is crucial for effective animal breeding.
- Heritability, genetic correlations, and advancements like GWAS and genomic selection enable the targeted improvement of traits for increased productivity and profitability in animal agriculture.

Thank you for your attention!

Táto prezentácia bola podporená grantom Erasmus+ KA2 Partnerstvá pre spoluprácu č. 2021-1-SK01-KA220-HED-000032068 "Inovácia štruktúry a obsahu študijných programov v oblasti manažmentu živočíšnych genetických a potravinových zdrojov s využitím digitalizácie - Inovácia obsahu a štruktúry študijných programov v oblasti manažmentu živočíšnych genetických a potravinových zdrojov s využitím digitalizácie". Podpora Európskej komisie na prípravu tejto prezentácie nepredstavuje schválenie jej obsahu, ktorý vyjadruje len názory autorov, a Komisia nenesie zodpovednosť za akékoľvek použitie informácií v nej obsiahnutých.

Tomáš Urban

urban@mendelu.cz

